NOTICE OF INTENT

Prepared For: Claudio Sena 146 Georgetown Road Boxford, MA 01921

Prepared By:

MF Engineering & Design 966 Hyde Park Avenue #303 Boston, MA 02136

Submitted to: Town of Boxford Conservation Commission 7A Spofford Road Boxford, MA 01921

Date: September 27, 2021

Structural Engineering • Building Design • Civil Engineering • Management Services

TRANSMITTAL LETTER

Project No. B05377

September 16, 2021 Ross Povenmire, Director **Conservation Commission** Town of Boxford 7 A Spofford Road Boxford, MA 01921

Subject: 146 Georgetown Road Stormwater Permit Application Claudio Sena. Owner/Applicant

Dear Mr. Povenmire,

On behalf of the Applicant, please consider our written application for a Stormwater Permit regarding the existing and proposed alteration at 146 Georgetown Road according to the requirements outlined in Chapter 160, Stormwater Management of the Boxford Code.

We include five (5) full sets of the complete package for the Commission and one (1) for the Superintendent of Public Works as required in Chapter 295, Stormwater Management Regulations of the Boxford Code. We are also emailing the complete application package to you for you to distribute electronically to your members.

The total amount of alteration on the site shown for the Stormwater Pollution Prevention Plan (SWPPP) that will be prepared prior to land disturbance equals approximately 2.55 acres. Based on the \$200.00 per quarter acre of the proposed alteration, the permit filing fee will be [(2.55/0.25) (200)] =\$2,040.00 according to Chapter 295.

Please feel free to contact me directly if you have any questions about any information presented above.

Very truly yours,

Ferreira MSc

CC: Claudion Sena

Table of Contents

1	Docun	nents Summary1					
2	Projec	Project Site1					
3	Wetlar	nd Delineation and Methodology1					
4	Summ	ary of Impacts1					
4	.1 C	onformance with MassDEP Stormwater Standards2					
	4.1.1	Standard 1 – No New Untreated Discharges2					
	4.1.2	Standard 2 – Peak Rate Attenuation2					
	4.1.3	Standard 3 – Recharge					
	4.1.4	Standard 4 – Water Quality2					
	4.1.5	Standard 5 – Land Uses with Higher Potential Pollutant Loads					
	4.1.6	Standard 6 – Critical Areas					
	4.1.7	Standard 7 – Redevelopment Projects					
	4.1.8 Control	Standard 8 – Construction Period Pollution Prevention and Erosion and Sedimentation 3					
	4.1.9	Standard 9 – Operations and Maintenance Plan					
	4.1.10	Standard 10 – Prohibition of Illicit Discharges3					
4	.2 C	ompliance with Boxford Bylaw for Bordering Vegetated Wetland					
5	Conclu	usion4					

List of Appendices

Appendix A – WPA Form 3 – Notice of Intent
Appendix B – NOI Transmittal Form and Photocopies of Checks
Appendix C – MassDEP Filing Number
Appendix D – Figure 1 – USGS Locus Map
Appendix E – Abutters Certified List, Notification and Certified Receipts
Appendix F – Project Summary by Environmental Consultant
Appendix G – Project Tree Narrative
Appendix H – Stormwater Management Report
Appendix I – Notice of Intent Plans

1 **Documents Summary**

In accordance with the Massachusetts Wetlands Protection Act (WPA), which relates to the protection of wetlands and water bodies, the filing of Notice of Intent (NOI) WPA Form 3 was completed shown in Appendix A – WPA Form 3 – Notice of Intent along with the following documents requirements:

- Appendix B NOI Transmittal Form and Photocopies of Checks
- Appendix C MassDEP Filing Number
- Appendix E Abutters Certified List, Notification and Certified Receipts

2 Project Site

The project site is a corner vacant land lot at the intersection of Georgetown Road and Ipswich Road with 3.16 Acres alongside Stevens Pond. The northern portion of the site is where contains the majority of wooded area and the southern portion of the site is mostly lawn area with some woods along Stevens Pond. There is a bordering vegetated wetland (BVW) located along southwest portion of the site bordering Stevens Pond. The project site is bounded by residential properties to the east and south directions located within the Residence-Agricultural (RA) zoning district, refer to Appendix D – Figure 1 – USGS Locus Map.

The project site topography is generally flat with elevations ranging from 124 on the northeast part of the lot to 119 on the south part of the lot and lowest elevation of 112 on back of the lot near Steven Pond, elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Stormwater runoff from the site predominantly flows from northeast to the south eventually reaching Stevens Pond without any stormwater management practice.

The project site is partially within a rare species habitat. The rare species habitat is identified as PH-1999 on the Natural Heritage and Endangered Species Program (NHESP).

3 Wetland Delineation and Methodology

Matthew S. Mario Environmental Consulting preformed in the field delineation of the bordering vegetated wetland resource. The flagging was completed with a series WF-1 to WF-22 consisting of pink flagging material with the words "wetland boundary" imprinted on the flagging material. Using the methodology provided by DEP policy 95-1, as the wetland bordering the pond was a thin strip, soils were not deemed necessary as the edge of the wetland was also at the terminus of a sloped area, although, mild was pronounced to the degree it was apparent vegetation and hydrology was sufficient for the delineation, further analysis is provided on Appendix F - Project Summary by Environmental Consultant.

In accordance with Boxford Stormwater bylaw the actual wetland buffer zones are from the Base Flood Elevation (BFE) in along with the wetland delineation. The site is located on FEMA Flood Insurance Map (FIRM), map number 25009C0261F, as Zone A. Zone AH for base flood elevation is given between 1-3 ft in areas of ponding. Given Zone AH is at higher risk than Zone A, therefore BFE estimated at 114 ft using the maximum depth of 3', refer to Appendix I – Notice of Intent Plans.

4 <u>Summary of Impacts</u>

The design of the proposed stormwater management system is to collect, treat and infiltrate runoff from the impervious areas. Impervious areas on site are the driveway, roof and patio areas. The total impervious area will only occupy approximately 0.37 Acres which is less than 12% of the project site.

Impervious areas runoffs are effectively managed by a vegetated drainage swale, rain garden, driveway infiltration trench and infiltration system from Cultec. Runoff from the driveway near Georgetown Road will be collected on the infiltration trenches, as the driveway approaches the new home the runoff will sheet flow to the sides, and near the home as approaches the garage entrance the runoff will be collected at a garage drain which will eventually reach the infiltration system with an overflow pipe to the rain garden. Vegetated swales will collect the project site sheet flow runoff to discharge to the rain garden. Roof runoff is collected in gutters and downspouts and are all directed to the rain garden. The rain garden has an overflow discharge with stone protection to the BVW.

The majority of impact is temporary within the buffer zones surface vegetation that will likely occur during construction. This will only be a temporary impact, because all disturbed areas will be repaired, and vegetative cover re-established prior to completion of the project. Appendix I - Notice of Intent Plans and Appendix H - Stormwater Management Report provides details of proposed measures that will be employed to prevent migration of sediments into protected areas as well as inspection and maintenance responsibilities necessary to maintain temporary construction controls.

4.1 Conformance with MassDEP Stormwater Standards

The ten (10) MassDEP Stormwater Management Standards provided in the Stormwater Management Policy and Massachusetts Wetlands Protection Act relate to the protection of wetlands and water bodies, control of water volume, recharge to groundwater, water quality and protection of critical areas, erosion/sedimentation control and stormwater maintenance. The following summarizes the Project's compliance with each of the Stormwater Management Standards, and additional information detailing compliance is provided on Appendix H - Stormwater Management Report.

4.1.1 Standard 1 – No New Untreated Discharges

The Project complies with Standard 1. No new point source discharges of untreated stormwater to or causing erosion in resource areas are proposed as part of the project. Stormwater quality control for project includes vegetated drainage swale, infiltration trench, infiltration system and rain garden. Stormwater discharge velocities for the project are mitigated by stone for pipe ends at various locations.

4.1.2 Standard 2 – Peak Rate Attenuation

The Project complies with Standard 2. The Project's stormwater management systems are designed so that post-development peak discharge rates do not exceed nor impact pre-development discharge rates for 2-, 10-, 25-, 50- and 100-year, 24-hour storm events.

4.1.3 Standard 3 – Recharge

The Project complies with Standard 3. The proposed stormwater management system incorporates the use of Rain Garden to provide the required groundwater recharge.

4.1.4 Standard 4 – Water Quality

The Project complies with Standard 4. The incorporation of the designed stormwater best management practices (BMPs) will achieve a cumulative Total Suspended Solids (TSS) removal rate greater than 80%. Designed BMPs are treating the total proposed impervious area. Additionally, Long-Term Pollution Prevention and Stormwater Operation & Maintenance Plan which provides practices on for sediment and pollution control.

4.1.5 Standard 5 – Land Uses with Higher Potential Pollutant Loads

Standard 5 is not applicable to the Project. The Project is not considered a Land Use with Higher Potential for Pollutant Loads (LUHPPL) as defined in the Massachusetts Stormwater Handbook.

4.1.6 Standard 6 – Critical Areas

The project complies with Standard 6. The Project does not discharge stormwater within the Zone II or Interim Wellhead Protection Area of a public water supply. In overflow scenarios from the rain garden discharge will occur near a Critical Area as defined in the Massachusetts Stormwater Handbook. As a result of this location, a copy of the Notice of Intent and supporting documentation was sent to NHESP and has been approved as refer to Appendix H - Stormwater Management Report.

4.1.7 Standard 7 – Redevelopment Projects

Standard 7 is not applicable to the Project. The Project does not qualify as a redevelopment project or other project subject to the Standards only to the maximum extent practicable.

4.1.8 Standard 8 – Construction Period Pollution Prevention and Erosion and Sedimentation Control

The project complies with Standard 8. The Project will result in the disturbance of greater than one (1) acre of land and requires coverage under the U.S. EPA National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges from Construction Activities (CGP). Prior to commencement of earth disturbing activities, a project-specific Storm Water Pollution Prevention Plan (SWPPP) will be prepared, and a Notice of Intent will be submitted to the EPA.

4.1.9 Standard 9 – Operations and Maintenance Plan

The Project complies with Standard 9. An Operations and Maintenance Plan to be implemented by the owner and its staff to ensure that stormwater management systems function as designed.

4.1.10 Standard 10 – Prohibition of Illicit Discharges

The Project complies with Standard 10. There are no known or designed illicit discharges on the project site.

4.2 Compliance with Boxford Bylaw for Bordering Vegetated Wetland

The project is located near Stevens Pond BVW and in compliance with the town of Boxford Bylaw nodisturbance will occur on the 25 ft buffer zone with the exception of the dead/poor trees removals, refer to Appendix G – Project Tree Narrative for further details and Appendix I – Notice of Intent Plans for locations. Site stormwater features and grading within the buffer zone limits, and building (permanent structure) placement outside the buffer zone were strategically designed to avoid permanent or temporary impacts to the BVW. Construction period erosion and sedimentation controls as shown on Appendix I – Notice of Intent Plans, will be installed prior to construction to prevent unintended impacts to BVW during construction and dead/poor removal.

The Project proposes no impacts to BVW and as such meets BVW performance standards listed at 310 CMR 10.55 and Article II of the Boxford Regulations for Resource Areas and Buffer Zones.

5 Conclusion

Potential migration of sediments during construction will be controlled using linear sedimentation controls placed downgradient of any land disturbance activities and stabilized construction entrances to limit tracking of sediments offsite from construction vehicle tires. Refer to Appendix I - Notice of Intent Plans and Appendix H - Stormwater Management Report for details and location of proposed controls. The proposed site improvements will be designed and constructed in compliance with MassDEP Stormwater Management Standards and construction activities will be performed in compliance with a site specific construction Stormwater Pollution Prevention Plan (SWPPP) which will be developed per the requirements of the United States Environmental Protection Agency (USEPA) National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges from Construction Activities (CGP). No negative stormwater impacts are anticipated during construction or operations.

APPENDIX A

WPA Form 3 - Notice of Intent

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

A. General Information

WPA Form 3 – Notice of Intent

Provided by MassDEP: MassDEP File Number Document Transaction Number

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Citv/To	wn
City/To	WI

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

Note: Before completing this form consult your local Conservation Commission regarding any municipal bylaw or ordinance.

146 Georgetown Ro	ad	Boxford	01921
a. Street Address		b. City/Town	c. Zip Code
	1.000	42.405646	70.5943224
Latitude and Longitu	nde:	d. Latitude	e. Longitude
25		04-08	
f. Assessors Map/Plat N	umber	g. Parcel /Lot Number	
Applicant:			
Claudio		Sena	
a. First Name		b. Last Name	
c. Organization			
146 Gerogetown Ro	bad		
d. Street Address			
Boxford		Ma	01921
e. City/Town		f. State	g. Zip Code
see representative		see representative	
	i. Fax Number	j. Email Address	
h. Phone Number Property owner (rec a. First Name	juired if different from ap	•	ore than one owner
Property owner (rec		oplicant):	ore than one owner
Property owner (rec		oplicant):	ore than one owner
Property owner (rec		oplicant):	ore than one owner
Property owner (rec a. First Name c. Organization		oplicant):	g. Zip Code
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town		b. Last Name	
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number	juired if different from ap	pplicant): Check if mo b. Last Name	
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a	juired if different from ap	pplicant): Check if mo b. Last Name	
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number	juired if different from ap	pplicant): Check if mo b. Last Name f. State j. Email address	
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name	juired if different from ap	pplicant): Check if mo b. Last Name f. State j. Email address Marro b. Last Name	
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name Matthew S. Marro E	i. Fax Number	pplicant): Check if mo b. Last Name f. State j. Email address Marro b. Last Name	
Property owner (red a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name Matthew S. Marro E c. Company 45 Lisa Drive	i. Fax Number	pplicant): Check if mo b. Last Name f. State j. Email address Marro b. Last Name	
Property owner (red a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name Matthew S. Marro E c. Company 45 Lisa Drive	i. Fax Number	pplicant): Check if mo b. Last Name f. State j. Email address <u>Marro</u> b. Last Name	g. Zip Code
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name Matthew S. Marro E c. Company 45 Lisa Drive d. Street Address Leomintser	i. Fax Number	pplicant): Check if mo b. Last Name f. State j. Email address Marro b. Last Name MA	g. Zip Code
Property owner (rec a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name Matthew S. Marro E c. Company 45 Lisa Drive d. Street Address Leomintser e. City/Town	i. Fax Number i. Fax Number iny):	pplicant): Check if mo b. Last Name f. State j. Email address Marro b. Last Name Marro Marro b. Last Name MA f. State	g. Zip Code
Property owner (red a. First Name c. Organization d. Street Address e. City/Town h. Phone Number Representative (if a Matthew a. First Name Matthew S. Marro E	i. Fax Number	pplicant): Check if mo b. Last Name f. State j. Email address Marro b. Last Name MA	g. Zip Code

N	assach	usetts Department o	f Environmental	Protection	Provided by MassDEP:
	Bureau of Resource Protection - Wetlands WPA Form 3 – Notice of Intent			MassDEP File Number	
		usetts Wetlands Prote	Document Transaction Number		
]	10000011				City/Town
Ā	. Gene	eral Information (c	ontinued)		
6	Genera	al Project Description:			
Ŭ		ached narrative	<u></u>		
-		Tupo Chooklist			
'	•	t Type Checklist:	,	2. 🗋 Resident	tial Subdivision
		Single Family Home			cial/Industrial
	3. 📋	Limited Project Driveway	Crossing		Claimhuusinai
	5. 🔲	Dock/Pier	(6. 🔲 Utilities	
	7. 🔲	Coastal Engineering Stru	icture	8. 🗌 Agricultu	ire (e.g., cranberries, forestry)
	9. 🗌	· · · · · · · · · · · · · · · · · · ·		10. 🗌 Other	d project subject to 310 CMR
		ed Project			
8	•	rty recorded at the Registry	y of Deeds for:		
	a. Coun	•		b. Certificate # (if reg	gistered land)
	36422 c. Book			7 d. Page Number	
Ī	3. Buff	er Zone & Resour	ce Area Impa	cts (tempora	ary & permanent)
	Veget 2. 🔲 In	uffer Zone Only – Check if ated Wetland, Inland Bank land Resource Areas (see al Resource Areas).	or Coastal Resource	ce Area.	
	projec	all that apply below. Attac t will meet all performance ing consideration of alterna	standards for each	of the resource a	mentation describing how the areas altered, including standar
	Resou	rce Area	Size of Proposed A	Alteration	Proposed Replacement (if any)
i ,	a. 🔲	Bank	1. linear feet		2. linear feet
-,	b. 🗌	Bordering Vegetated Wetland	1. square feet		2. square feet
	c . 🗌	Land Under Waterbodies and	1. square feet		2. square feet
		Waterways	3 cubic vards dredoe		

3. cubic yards dredged

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

Provided by MassDEP:

MassDEP File Number

		Form 3 – Noti	ce of Intent ction Act M.G.L. c. 131, §40	Document Tr	ansaction Number
	issacn	usetts vvettanus Frotet	CION ACT WI.G.L. C. 131, 340	City/Town	
B	Buff	er Zone & Resourc	e Area Impacts (tempora		nt) (cont'd)
υ.	Dun				, (,
	Resour	ce Area	Size of Proposed Alteration	Proposed Replace	e <u>ment (if any)</u>
	d. 🔲	Bordering Land Subject to Flooding	1. square feet	2. square feet	
			3. cubic feet of flood storage lost	4. cubic feet replace	ed
	e. 🗌	Isolated Land Subject to Flooding	1. square feet		
			2. cubic feet of flood storage lost	3. cubic feet replace	d
	f. 🗌	Riverfront Area	1. Name of Waterway (if available)	<u></u>	
	2. \	Nidth of Riverfront Area (ch	neck one):		
		25 ft Designated De	ensely Developed Areas only		
		🔲 100 ft New agricultu	ural projects only		
		200 ft All other proj	ects		
	3.	Total area of Riverfront Are	a on the site of the proposed projec	square fe	eet
	4.	Proposed alteration of the F	Riverfront Area:		
	a. 1	otal square feet	b. square feet within 100 ft.	c. square feet betweer	100 ft. and 200 ft.
	5.	Has an alternatives analysi	s been done and is it attached to th	is NOI? [] Yes 🗌 No
	6. '	Was the lot where the activ	ity is proposed created prior to Aug	ust 1, 1996? [🗌 Yes 🗌 No
3.	Co:	astal Resource Areas: (See	310 CMR 10.25-10.35)		
	will me	et all performance standar	h narrative and supporting docume ds for each of the resource areas a live project design or location.	ntation describing Itered, including st	how the project andards
	Resou	rce Area	Size of Proposed Alteration	Proposed Repla	acement (if any)
	a. 🔲	Designated Port Areas	Indicate size under Land Under	the Ocean, below	
	b. 🗌	Land Under the Ocean	1. square feet		
			2. cubic yards dredged		
	c. 🗌	Barrier Beach	Indicate size under Coastal Beac	hes and/or Coasta	al Dunes below
	d. 📋	Coastal Beaches	1. square feet	2. cubic yards beac	ch nourishment
	e. 🗌	Coastal Dunes	1. square feet	2. cubic yards dune	e nourishment

Online Users:

Include your document transaction number (provided on your receipt page) with all supplementary information you submit to the

Department.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Provided by MassDEP:

MassDEP File Number

Document Transaction Number

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

City/Town

B. Buffer Zone & Resource Area Impacts (temporary & permanent) (cont'd)

			Size of Proposed Alteration	Proposed Replacement (if any)
	f. 🔲	Coastal Banks	1. linear feet	
	g. 🗌	Rocky Intertidal Shores	1. square feet	
	h. 🔲	Salt Marshes	1. square feet	2. sq ft restoration, rehab., creation
	i. 🔲	Land Under Salt Ponds	1. square feet	_
			2. cubic yards dredged	
	j. 🔲	Land Containing Sheilfish	1. square feet	
	K. 🗌	Fish Runs		Banks, inland Bank, Land Under the Inder Waterbodies and Waterways,
			1. cubic yards dredged	
	I. 🔲	Land Subject to Coastal Storm Flowa	ge 1. square feet	
	amour	e footage that has be it here.	en entered in Section B.2.b or B.3.h	above, please enter the additional
5.		oject Involves Strean		
0.				
	a. numb	er of new stream crossing	b. number of	replacement stream crossings
		••	Standards and Requirem	
St	reamli	ned Massachusett	s Endangered Species Act/Wet	lands Protection Act Review
1.	the mo Herita Natura	ost recent Estimated ge and Endangered S al Heritage Atlas or ge	Habitat Map of State-Listed Rare We Species Program (NHESP)? To view	Vitat of Rare Wildlife as indicated on Itland Wildlife published by the Natura habitat maps, see the <i>Massachusetts</i> by habitat/online_viewer.htm.
	a. 🛛	Yes 🗌 No lfy	es, include proof of mailing or ha	nd delivery of NOI to:
	May 2	021 MASS	Natural Heritage and Endangered Sp Division of Fisheries and Wildlife Route 135, North Drive	ecies Program

Westborough, MA 01581

May 2021 MASS

GIS

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

rovided I	by N	lassDE	P:
-----------	------	--------	----

MassDEP File Number

Document Transaction Number

City/Town

C. Other Applicable Standards and Requirements (cont'd)

If yes, the project is also subject to Massachusetts Endangered Species Act (MESA) review (321 CMR 10.18). To qualify for a streamlined, 30-day, MESA/Wetlands Protection Act review, please complete Section C.1.C, and include requested materials with this Notice of Intent (NOI); OR complete Section C.1.d, if applicable. If MESA supplemental information is not included with the NOI, by completing Section 1 of this form, the NHESP will require a separate MESA filing which may take up to 90 days to review (unless noted exceptions in Section 2 apply, see below).

- 1. c. Submit Supplemental Information for Endangered Species Review*
 - 1. X Percentage/acreage of property to be altered:

	0		
(a) within wetland Resource Area	percentage/acreage		
	0.7 ac	_	
(b) outside Resource Area	percentage/acreage		

- 2. X Assessor's Map or right-of-way plan of site
- 3. In Project plans for entire project site, including wetland resource areas and areas outside of wetlands jurisdiction, showing existing and proposed conditions, existing and proposed tree/vegetation clearing line, and clearly demarcated limits of work ****
 - (a) Project description (including description of impacts outside of wetland resource area & buffer zone)
 - (b) Photographs representative of the site
 - (c) K MESA filing fee (fee information available at:
 - http://www.mass.gov/dfwele/dfw/nhesp/regulatory_review/mesa/mesa_fee_schedule.htm). Make check payable to "Commonwealth of Massachusetts - NHESP" and *mail to NHESP* at above address

Projects altering 10 or more acres of land, also submit:

- (d) Vegetation cover type map of site
- (e) Project plans showing Priority & Estimated Habitat boundaries
- d. OR Check One of the Following
 - 1. Project is exempt from MESA review. Attach applicant letter indicating which MESA exemption applies. (See 321 CMR 10.14, <u>http://www.mass.gov/dfwele/dfw/nhesp/regulatory_review/mesa/mesa_exemptions.htm;</u> the NOI must still be sent to NHESP if the project is within estimated habitat pursuant to 310 CMR 10.37 and 10.59.)
 - 2. Separate MESA review ongoing.

a. NHESP Tracking # b. Date submitted to NHESP

^{*} Some projects not in Estimated Habitat may be located in Priority Habitat, and require NHESP review (see

http://www.mass.gov/dfwele/dfw/nhesp/nhesp.htm, regulatory review tab). Priority Habitat includes habitat for state-listed plants and strictly upland species not protected by the Wetlands Protection Act.

^{**} MESA projects may not be segmented (321 CMR 10.16). The applicant must disclose full development plans even if such plans are not required as part of the Notice of Intent process.

wpaform3.doc • rev. 11/16/09

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

rovided by	MassDEP:
------------	----------

MassDEP File Number

Document Transaction Number

C. Other Applicable Standards and Requirements (cont'd)

- Separate MESA review completed. 3. 🗋 Include copy of NHESP "no Take" determination or valid Conservation & Management Permit with approved plan.
- 2. For coastal projects only, is any portion of the proposed project located below the mean high water line or in a fish run?
 - a. X Not applicable project is in inland resource area only

b. 🔲 Yes	🗌 No	If yes, includ	te proof of mailin	ng or hand deliver	of NOI to either:
----------	------	----------------	--------------------	--------------------	-------------------

South Shore - Cohasset to Rhode Island, and the Cape & Islands:

Division of Marine Fisheries -Southeast Marine Fisheries Station Attn: Environmental Reviewer 1213 Purchase Street - 3rd Floor New Bedford, MA 02740-6694

Division of Marine Fisheries -North Shore Office Attn: Environmental Reviewer

North Shore - Hull to New Hampshire:

30 Emerson Avenue Gloucester, MA 01930

Also if yes, the project may require a Chapter 91 license. For coastal towns in the Northeast Region, please contact MassDEP's Boston Office. For coastal towns in the Southeast Region, please contact MassDEP's Southeast Regional Office.

3. Is any portion of the proposed project within an Area of Critical Environmental Concern (ACEC)?

Online Users: Include your document		a. Yes No If yes, provide name of ACEC (see instructions to WPA Form 3 or MassDEP Website for ACEC locations). Note: electronic filers click on Website.				
transaction		b. ACEC				
number (provided on your receipt page) with all	4.	 Is any portion of the proposed project within an area designated as an Outstanding Resource Wa (ORW) as designated in the Massachusetts Surface Water Quality Standards, 314 CMR 4.00? 				
supplementary		a. 🗋 Yes 🖾 No				
information you submit to the Department.	5.	Is any portion of the site subject to a Wetlands Restriction Order under the Inland Wetlands Restriction Act (M.G.L. c. 131, § 40A) or the Coastal Wetlands Restriction Act (M.G.L. c. 130, § 105)?				
		a. 🗌 Yes 🖾 No				
	6.	Is this project subject to provisions of the MassDEP Stormwater Management Standards?				
		 a. Yes. Attach a copy of the Stormwater Report as required by the Stormwater Management Standards per 310 CMR 10.05(6)(k)-(q) and check if: 1. Applying for Low Impact Development (LID) site design credits (as described in 				
		Stormwater Management Handbook Vol. 2, Chapter 3)				
		2. A portion of the site constitutes redevelopment				
		3. Proprietary BMPs are included in the Stormwater Management System.				
		b. No. Check why the project is exempt:				

1. 🛛 Single-family house

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

rovided b	y Ma	assDEP:	
-----------	------	---------	--

MassDEP File Number

Document Transaction Number

City/Town

C. Other Applicable Standards and Requirements (cont'd)

- 2. Emergency road repair
- 3. Small Residential Subdivision (less than or equal to 4 single-family houses or less than or equal to 4 units in multi-family housing project) with no discharge to Critical Areas.

D. Additional Information

Applicants must include the following with this Notice of Intent (NOI). See instructions for details.

Online Users: Attach the document transaction number (provided on your receipt page) for any of the following information you submit to the Department.

- 1. USGS or other map of the area (along with a narrative description, if necessary) containing sufficient information for the Conservation Commission and the Department to locate the site. (Electronic filers may omit this item.)
- 2. Plans identifying the location of proposed activities (including activities proposed to serve as a Bordering Vegetated Wetland [BVW] replication area or other mitigating measure) relative to the boundaries of each affected resource area.
- 3. Identify the method for BVW and other resource area boundary delineations (MassDEP BVW Field Data Form(s), Determination of Applicability, Order of Resource Area Delineation, etc.), and attach documentation of the methodology.
- 4. 🖾 List the titles and dates for all plans and other materials submitted with this NOI.

Noitice of Intent Plan a. Plan Title	
MF Engineering and Designs	Carlos Ferreira
b. Prepared By	c. Signed and Stamped by
June 11, 2021	20
d. Final Revision Date	e. Scale

f. Additional Plan or Document Title

g. Date

5. If there is more than one property owner, please attach a list of these property owners not listed on this form.

- 6. Attach proof of mailing for Natural Heritage and Endangered Species Program, if needed.
- 7. Attach proof of mailing for Massachusetts Division of Marine Fisheries, if needed.
- 8. 🛛 Attach NOI Wetland Fee Transmittal Form
- 9. Attach Stormwater Report, if needed.

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 3 – Notice of Intent

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

01	vided by MassDEP:
	MassDEP File Number
	Document Transaction Number

City/Town

E. Fees

 Fee Exempt: No filing fee shall be assessed for projects of any city, town, county, or district of the Commonwealth, federally recognized Indian tribe housing authority, municipal housing authority, or the Massachusetts Bay Transportation Authority.

Applicants must submit the following information (in addition to pages 1 and 2 of the NOI Wetland Fee Transmittal Form) to confirm fee payment:

5055	6.24.21		
2. Municipal Check Number	3. Check date		
5054	6.24.21		
4. State Check Number	5. Check date		
Matthew	Marro		
6. Payor name on check: First Name	7. Payor name on check: Last Name		

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

1. Signature of Applicant SEQ Next Page Me	2. Date
3. Signature of Property Owner (if different)	4. Date
	June 21, 2021
5. Signature of Representative (if any)	6. Date

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Notice of Intent (Form 3), including supporting plans and documents, one copy of the NOI Wetland Fee Transmittal Form, and a **copy** of the state fee payment to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery.

Other:

If the applicant has checked the "yes" box in any part of Section C, Item 3, above, refer to that section and the Instructions for additional submittal requirements.

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

d f	Final Revision Date	e Scale	
	Additional Plan or Document Title If there is more than one property owner, plu listed on this form. Attach proof of mailing for Natural Heritage Attach proof of mailing for Massachusetts D Attach NOI Wetland Fee Transmittal Form		
9.	Attach Stormwater Report, if needed.		

E. Fees

1

of

Fee Exempt: No filing fee shall be assessed for projects of any city, town, county, or district the Commonwealth, federally recognized Indian tribe housing authority, municipal housing authority, or the Massachusetts Bay Transportation Authority.

Applicants must submit the following information (in addition to pages 1 and 2 of the NOI Wetland Fee Transmittal Form) to confirm fee payment:

5055	6.24.21	
2. Municipal Check Number	3. Check date	
5054	6.24.21	
4. State Check Number	5 Check date	
Matthew	Marro	
6. Payor name on check: First Name	7. Payor name on check: Last Name	

F. Signatures and Submittal Requirements

I hereby certify under the penalties of perjury that the foregoing Notice of Intent and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made by Certificate of Mailing or in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

sture of Applican (if different) Signature of

4. Date June 21, 2021 6. Date

For Conservation Commission:

Two copies of the completed Notice of Intent (Form 3), including supporting plans and documents, two copies of the NOI Wetland Fee Transmittal Form, and the city/town fee payment, to the Conservation Commission by certified mail or hand delivery.

APPENDIX B

NOI Transmittal Form and Photocopies of Checks

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands NOI Wetland Fee Transmittal Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Important: When
filling out forms
on the computer,
use only the tab
key to move your
cursor - do not
use the return
key.

A. Applicant Information

1. Applicant:

2.

Claudio

a. First Name		b. Last Name	
c. Organization			
146 Georgetown Road			
d. Mailing Address			
Boxford		MA	01921
e. City/Town		f. State	g. Zip Code
978-314-7858 (REP)	775-521-7083 (REP)	matt@marro-consulting.com	
h. Phone Number	i. Fax Number	j. Email Address	

Sivla

a. First Name		b. Last Name	
c. Organization			
d. Mailing Address			
e. City/Town		f. State	g. Zip Code
h. Phone Number	i. Fax Number	j. Email Address	
Project Location:			
146 Gerogetown Roa	d	Boxford	
a. Street Address		b. City/Town	

To calculate filing fees, refer to the category fee list and examples in the instructions for filling out WPA Form 3 (Notice of Intent).

B. Fees

The fee should be calculated using the following six-step process and worksheet. **Please see Instructions before filling out worksheet.**

Step 1/Type of Activity: Describe each type of activity that will occur in wetland resource area and buffer zone.

Step 2/Number of Activities: Identify the number of each type of activity.

Step 3/Individual Activity Fee: Identify each activity fee from the six project categories listed in the instructions.

Step 4/Subtotal Activity Fee: Multiply the number of activities (identified in Step 2) times the fee per category (identified in Step 3) to reach a subtotal fee amount. Note: If any of these activities are in a Riverfront Area in addition to another Resource Area or the Buffer Zone, the fee per activity should be multiplied by 1.5 and then added to the subtotal amount.

Step 5/Total Project Fee: Determine the total project fee by adding the subtotal amounts from Step 4.

Step 6/Fee Payments: To calculate the state share of the fee, divide the total fee in half and subtract \$12.50. To calculate the city/town share of the fee, divide the total fee in half and add \$12.50.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands NOI Wetland Fee Transmittal Form Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Fe	es (continued)			
Ste	p 1/Type of Activity	Step 2/Number of Activities	Step 3/Individual Activity Fee	Step 4/Subtotal Activity Fee
cat and	1 steps to Dock , Rain Garden patio/pool	3	330	330
		Step 5/T	otal Project Fee	330+600 local
		Step 6		
		Total Project Fee:		330 a. Total Fee from Step 5
		State share	e of filing Fee:	152.50 b. 1/2 Total Fee less \$12.50
		City/Town shar	e of filling Fee:	177.50 c. 1/2 Total Fee plus \$12.50

C. Submittal Requirements

a.) Complete pages 1 and 2 and send with a check or money order for the state share of the fee, payable to the Commonwealth of Massachusetts.

Department of Environmental Protection Box 4062 Boston, MA 02211

b.) To the Conservation Commission: Send the Notice of Intent or Abbreviated Notice of Intent; a copy of this form; and the city/town fee payment.

To MassDEP Regional Office (see Instructions): Send a copy of the Notice of Intent or Abbreviated Notice of Intent; a copy of this form; and a copy of the state fee payment. (E-filers of Notices of Intent may submit these electronically.)

APPENDIX C

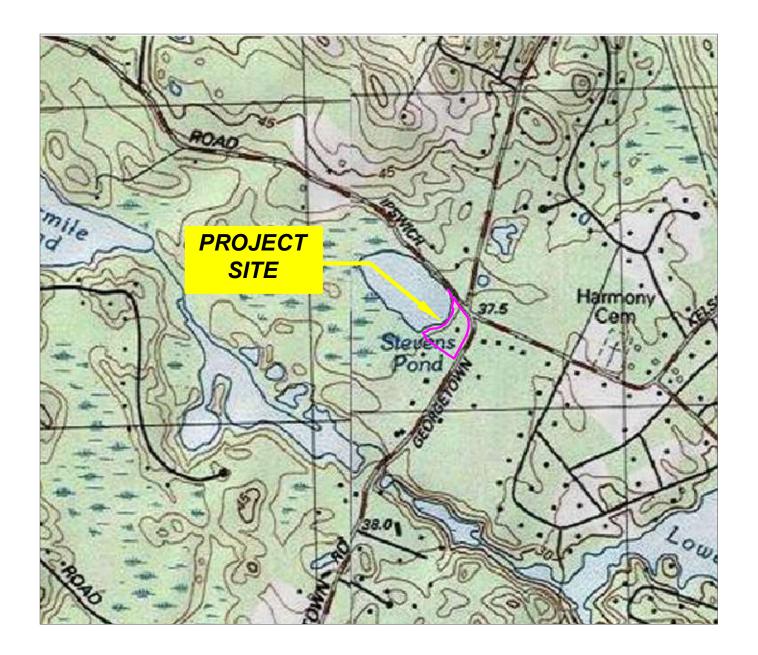
MassDEP Filing Number

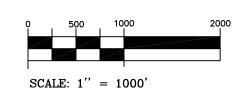
Matthew Marro <matt@marro-consulting.com>

146 Georgetown Rd Boxford

Freeley, James (DEP) <james.freeley@state.ma.us> Thu, Jul 29, 2021 at 5:26 PM To: "Geilen, Alicia (DEP)" <alicia.geilen@state.ma.us>, Matthew Marro <matt@marro-consulting.com>, "Lally, Kyle (DEP)" <kyle.lally@state.ma.us>

Hi all. file number for 146 Georgetown Road, Boxford is # 114-1331. Analyst is Kyle Lally.


THanks Jim Freeley


From: Geilen, Alicia (DEP) <Alicia.Geilen@mass.gov> Sent: Thursday, July 29, 2021 12:36 PM To: Matthew Marro <matt@marro-consulting.com> Cc: Freeley, James (DEP) <james.freeley@mass.gov> [Quoted text hidden]

[Quoted text hidden]

APPENDIX D

Figure 1 - USGS Locus Map

APPENDIX E

Abutters Certified List, Notification and Certified Receipts 25-04-08 - 146 GEORGETOWN RD, BOXFORD ABUTTERS LIST CONSERVATION COMMISSION 250' PONDS

arcel ID	Location	Owner	Owner 2	Owner Address	Owner City/Town	Owner State	Zip Code
9-02-20	IPSWICH RD	BTA/BOLT INC		P O 80X 95	BOXFORD	MA	01921
0-14-11	150 GEORGETOWIN RD	GILBERT JUNE E TR	JUNE E GILBERT 1996 TRUST	150 GEORGETOWN RD	BOXFORD	MA	01921
5-03-11	127 GEORGETOWN RD	SPILLANE SARAH		127 GEORGETOWN RD	BOXFORD	MA	01921
25-03-12	135 GEORGETOWN RD	EHLERS PAMELA		135 GEORGETOWN RD	BOXFORD	MA	01921
S-03-13	145 GEORGETOWN RD	OSTRER JEFFREY E		145 GEORGETOWN RD	BOXFORD	MA	01921
5-04-10	128 GEORGETOWN RD	BURKE ROBERT G TE	BURKE DONNA L	128 GEORGETOWN RD	BOXFORD	MA	01921
25-04-07-4	12 AZALEA WAY	SCHROER PETER	SCHROER KAREN E	12 AZALEA WAY	BOXFORD	MA	01921
25-04-07-5	14 AZALEA WAY	DREW MICHAEL A	DREW CHRISTINE A	14 AZALEA WAY	BOXFORD	MA	01921
25-04-08	146 GEORGETOWN RD	PONTES-JUNIOR, CLAUDIO SENA		35 MANSION DRIVE	TOPSFIELD	MA	01983
25-04-09	134 GEORGETOWN RD	EVANS ANDREW W TE	EVANS KAREN A	134 GEORGETOWN RD	BOXFORD	MA	01921

CERTIFIED COPY

Notification to Abutters Under the Massachusetts Wetlands Protection Act <u>And</u> the Boxford Wetlands Bylaw

In accordance with the second paragraph of Massachusetts General Laws Chapter 131, Section 40, you are hereby notified of the following:

A. The name of the applicant is Claudio Sena

B. The applicant has filed a

Determination of ApplicabilityXNotice of IntentAbbreviated Notice of Resource Area Delintation

with the Conservation Commission of the Town of Boxford seeking permission to remove, fill, dredge or alter an area subject to protection under the wetland protection act (General Laws Chapter 131, Section 40).

C. The address where the activity is proposed is 146 Georgetown Road

D. The activity consists of grading, tree removal, a rain garden and an in-ground swimming pool within the buffer zone of Stevens Pond.

E. Copies of the filing may be examined at the Conservation Commission Office,

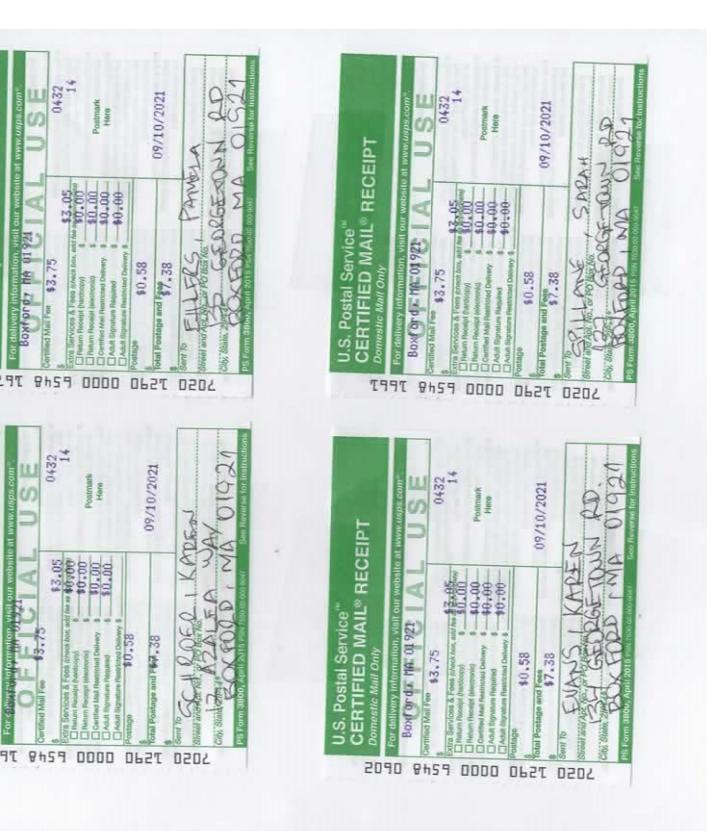
Town Hall, between the hours of 8:30 am and 2 PM on Monday to Thursday. For

more information, call (978) 887-6000 x181

The meeting date is to be set. The meeting details will be posted on the agenda issue by the commission.

F. Copies of the application may be obtained from the Conservation Commission by calling (978) 887-6000 ext. 181 during the hours 8:20am-2pm, Monday to Thursday.

G. Information regarding the date, time and place of the public hearing may be obtained from the Conservation Commission Office by calling (978) 877-6000 x181 during the hours listed above.


NOTE: Notice of the public hearing, including its date, time, and place, will be published at least five (5) days in advance in your local newspaper.

NOTE: Notice of the public hearing, including its date, time and place will be posted in the Town Hall not less than forty-eight (48) hours in advance.

NOTE: You also may contact The Boxford Conservation Commission or the Department of Environmental Protection (DEP) Regional Office for more information about this application or the Wetlands Protection Act. To contact DEP call the Northeast Regional Office at (978) 694-3200.

A PDF of the notice of Intent may also be obtained via email to contact@mf-eng.com

APPENDIX F

Project Summary by Environmental Consultant

MATTHEW S. MARRO ENVIRONMENTAL CONSULTING

45 Lisa Drive Leominster, Ma Phone (978) 314-7858 Fax (888) 435-5999 www.marro-consulting.com

The following is a narrative to accompany the enclosed Notice of Intent:

Summary:

The lot in question is a 3.1 acre developed residential lot.¹ The lot has a bordering vegetated wetland That abuts the rear property line and is bordering Steven's Pond. The lot, formerly had a single family home structure that is no longer on this lot. The majority of the lot and the adjacent upland portion is cleared land, the majority of such is field. The proposal is for the construction of a single family home, a rain garden and landscaping, a swimming pool and patio area. The house structure, driveway and septic system is not located within the buffer zone. The rear yard, swimming pool and grading to accommodate such is within the outer 50 feet of the 100-foot buffer zone.

The site is also partially within a rare species habitat. As a result of the location, a copy of this Notice of Intent and supporting documentation has been copied as required to the Natural Heritage and Endangered Species program for their review as well.

Defined wetland edge:

Matthew S. Marro Environmental Consulting preformed in the field delineation of the bordering vegetated wetland resource. The flagging was completed with a series WF 1 to WF 22 consisting of pink flagging material with the words "wetland boundary" imprinted on the flagging material. In accordance with DEP policy 95-1, as the wetland bordering the pond was a thin strip, soils were not deemed necessary as the edge of the wetland was also at the terminus of a sloped area, although, mild was pronounced to the degree it was apparent vegetation and hydrology was sufficient for the delineation.

The following table was the consistent makeup of vegetation along the border of the wetland resource area:

Botanical Name	Common Name	Wetland Indicator Status ⁱ
Onoclea sensibilis	Sensitive Fern	FACW
Osmundastrum cinnamomeum	Cinnamon Fern	FACW
Ambrosia Artemisiifolia	Rag weed	UP

¹ As per Oliver mass GIS 2021

Acer Rubrum	Red Maple	FAC
Pinus Strobus	White Pine	FACUP
Toxicodendron Radican	Poison Ivy	FAC
Osmunda regalis	Royal Fern	OBL
Solidago virgaurea	Golden Road	FACUP
Hemlock	Tsuga canadensis	FACUP
Canada Mayflower	Maianthemum canadense	FACUP
Norther Red Oak	Quercus rubra	FACUP
European White Birch	Betula pendula	FACUP

Environmental Attributes

Mass GIS Overlay Evaluation:

Examination of the lot on the Commonwealth's MassGIS database revealed the following:

- 1. There is a portion of the lot within habitat polygon 1994. A copy of this Notice of Intent has been sent to MESA.
- 2. There is no portion of the lot area within an Area of Critical Environmental Concern or within the near vicinity.
- 3. There is a noted area at the rear of the lot at the shoreline only that is within flood zone A overlay on the property according to both FEMA and Mass GIS. This should be accounted for to ensure work proposals within the rear yard are considered or are not within the boundaries of
- 4. There are no certified vernal pools nor potential vernal pools that are either located on the lot or the lot abutting.

(SEE EXHIBIT -NEXT PAGE)

MASS GIS OVERLAYS FOR 146 GEORGETOWN ROAD, BOXFORD, MA (June 2021)

Sincerely,

2 11214- -

Matthew S. Marro

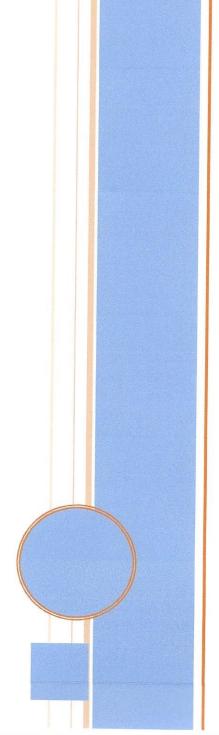
Principle Consultant

¹ Obl= Obligate. Fac= Facultative. Up (or FACUP) = Upland Notation: FACW = Facultative wetland species

Per Mass GIS online, June 2020

APPENDIX G

Project Tree Narrative



NOTICE OF INTENT

Tree Narrative.

146 Georgetown Road, Boxford, MA

Matthew S. Marro Environmental Consulting September 2021

The following is an analysis of tree removal and replantation within the 100-foot buffer zone of proposed construction at 146 Georgetown Road. Construction activity proposed is one single family home. This narrative is based on a plan by MF Engineering entitled:

"Landscape Plan "by MF Engineering with a revision date of September 27, 2021, plan number 146-0521.

Please refer to the plan for detail concerning this narrative. The Notice of Intent submitted proposes the removal and replanting of trees within the buffer zone to replace trees that are in good condition and at the same time continue to provide the tree canopy value for the maintenance of wildlife habitat and shade value for runoff afforded by a well-maintained canopy.

Analysis of tree removal within the 100 foot buffer zone

The entire site had 245 trees located and noted in the submitted plan. Within the buffer zone, there are a total of 152 trees itemized with locations noted on the site plan. Within the 100-foot buffer zone there are a total of 22 trees that are dead and noted for removal. This leaves the total amount of trees that are in good condition within the buffer zone totaling 132. Because of construction and grading to accommodate the single-family home, the rear yard, and the proposed rain garden a total of 26 live trees will be removed to accommodate construction. Removing from the total, the trees that are on site that are dead and <u>only</u> considering those trees in total that are alive and in good condition, the proposed removal of trees within the buffer zone total 19.6 % of the total inventory. (Noteworthy is the total of viable trees to the entire site including the area of lot <u>not</u> within the buffer zone, the entire total of the site of trees in good condition to be removed also total to a 19% range).

The species of viable trees that are noted to be removed are White Pine, Black Oak, Black Cherry, Red Maple and Cedar. The diameters of the majority of the trees average 12 inches with two of the White Pine and one Black Oak having much larger diameters (please refer to the enclosed tree inventory list which corresponds to the enclosed plans for the details of the variety of species and diameter)

Overstory Planting Narrative:

All trees to be utilized are native. The proposed replacement of trees allows for the continuity of the values of the trees currently within the buffer zone to be maintained.

The following overstory layer planting plan assumes establishment of contiguous overstory to replace the overstory altered by proposed construction.

The proposal for the planting plan is to plant the following:

- 1. Black Oak.
- 2. Red Maple.

Based on the density required for good growth that will not result in a situation where the trees are competing with each other for survival, it is assumed a planting grid pattern as noted on the referenced plans, is the standard to be used in the replanting areas.

The locations of the trees are maximized to provide both a vegetative buffer between the proposed construction and the wetland resource area and to maintain the canopy value to the resource area that is important to protect. It is important to note that the plantings within the south east corner of the property within the buffer zone actually will provide an increased canopy, enhancing the canopy value within that portion of the buffer zone that currently does not exist.

Thank you for the opportunity to contribute to the protection of the wetland resource area. Please feel free to call on me to clarify this proposal.

Respectfully Submitted,

Matthew S. Marro, Consulting Agent/Principle

Tree #	Species	Diamotor(inches)	Condition
	L Pin Oak	Diameter(inches)	Condition Good
	2 Sugar Maple		Good
	B Hemlock		Good
	Red Maple		Good
	Blue Spruce		Good
	6 White Pine		Good
	White Pine		Good
	8 White Pine		Good
	White Oak		Good
10	Black Oak		Good
11	Black Oak		Good
12	White Pine		Good
13	Black Oak		Good
14	Black Oak		Good
15	White Pine	48	Good
16	Multi Stemmed Holly	7	Good
17	Black Locus		Good
18	Crab Apple	12	Good
19	Crab Apple	10	Good
20	Needle Leaf Pine	24	Good
21	Black Oak	12	Dead
22	Quacking Aspen	36	Good
23	White Pine	36	Good
24	White Pine	60	Good
	White Pine	64	Good
	White Pine	60	Good
	White Pine	64	Good
	Red Maple	24	Good
	Cedar		Good
	Cedar	12	Good
	Cedar		Good
	Cedar Black Oak		Good
	Black Oak White Pine		Good
	Black Oak		Good
	Red Maple		Good
	White Pine		Good
	Cedar		Dead
	Black Cherry		Good Good
	White Pine		Good
	White Oak		Good
	White Pine		Good
	Black Oak		Good
	Black Oak		Good
	White Pine		Good
	Black Oak		Good
		10	

47 White Pine		48 Good
48 Cedar		10 Good
49 White Pine		36 Good
50 Twin Cedars	10 total	Good
51 Gray Birch		6 Good
52 Black Oak		24 Good
53 White Pine		
		36 Good
54 White Pine		36 Good
55 White Pine		48 Good
56 White Pine		64 Good
57 Black Oak		12 Good
58 Black Oak		24 Good
59 Cedar		12 Good
60 Cedar		12 Good
61 White Pine		48 Good
62 Red Maple		12 Good
63 Cedar		12 Good
64 Honey Locus		12 Good
65 White Pine		48 Good
66 Gray Birch		24 Good
67 White Pine		18 Good
68 White Pine		12 Good
69 Red Maple		24 Good
70 White Pine		60 Good
71 White Pine		48 Good
72 Black Cherry		10 Good
73 White Pine		48 Good
74 White Pine		36 Good
75 White Oak		
		36 Good
76 White Ash		36 Poor
77 White Ash		36 Dead
78 White Pine		36 fair
79 Red Maple		24 Good
80 Red Maple		12 Good
81 Red Maple		36 Fair (Bark Girdled)
82 Red Maple		24 Good
83 White Ash		24 Dead
84 Red Maple		24 Good
85 Cedar		12 Good
86 Cedar		
		12 Poor
87 Cedar		12 Dead
88 Cedar		10 Fair
89 White Pine		18 Good
90 Cedar		12 Good
91 Cedar		18 Good
92 Cedar		12 Good
93 Red Maple Double	36 and 24	Good

04 Plack Charny		19 Cood
94 Black Cherry 95 Black Oak		18 Good
96 Cedar		12 Good
97 Cedar		10 Good
		6 Good
98 Black Cherry		18 Good
99 Black Cherry		12 Good
100 Red Maple		24 Poor
101 White Ash		24 Dead
102 Red Maple		24 Good
103 White Pine		24 Good
104 White Pine		24 Good
105 Cedar		10 Good
106 White Pine		18 Good
107 Black Oak		12 Good
108 Black oak		12 Good
109 Black Oak		12 Good
110 Black Oak		18 Good
111 Cedar		12 Good
112 Cedar		12 Good
113 Cedar		6 Good
114 Cedar		6 Good
115 Black Oak		12 Good
116 Cedar		6 Good
117 Cedar		6 Good
118 White Ash		36 Poor
119 Black Cherry		12 Good
120 White Pine		16 Dead
121 Red Maple		16 Good
122 Black Oak		12 Good
123 Crab Apple		12 Good
124 White Plne		24 Good
125 White Pine		24 Good
126 Cedar		12 Good
127 Cedar		12 Good
128 Cedar		12 Good
129 White Ash		36 Dead
130 White Ash		24 Dead
131 Double Hemlock	12 and 24	Fair
132 Cedar		12 Good
133 Cedar		10 Good
134 Red Maple Double	12 and 24	Good
135 Cedar		10 Good
136 Sugar Maple		18 Good
137 Hemlock		18 Good
138 White Ash		24 Dead
139 Double White Ash	36 and 36	Dead
140 Black Oak		18 Good

141 Black Oak		12 Good
142 Sugar Maple		18 Good
143 White Pine		36 Good
144 White Ash		24 Dead
145 Black Oak		12 Good
146 Cedar		12 Good 18 Good
147 Cedar		18 Good
148 Sugar Maple		18 Good
149 Black Oak		
150 White Ash		12 Good
151 Cedar		18 Dead
152 White Pine		12 Good
152 White The 153 Cedar		36 Good
155 White Pine		12 Good
155 Black Oak		24 Good
156 Black Oak		16 Good
157 White Pine		10 Good
158 Black oak		18 Good
159 White Pine		10 Good
160 White Pine		12 Good
161 Black Oak		12 Dead
	07.0	48 Good
162 Telephone Pole 163 White Ash	97-2	reference shot
		24 Poor
164 White Ash		18 Dead
165 Black Oak 166 White Ash		6 Good
		24 Poor
167 White Pine		24 Good
168 Black Cherry		12 Fair
169 White Plne 170 Hemlock		18 Good
170 Herniock 171 White Pine		18 Good
		24 Poor
172 Sugar Maple		10 Good
173 White Pine 174 White Ash		36 Good
174 White Ash 175 White Pine		10 Dead
		32 Good
176 White Pine		24 Good
177 White Oak		10 Good
178 Cedar		10 Good
179 White Pine		24 Good
180 White Pine		24 poor
181 White Pine		24 Good
182 White Pine		24 Good
183 White Pine		36 Good
184 Black Cherry		6 Dead
185 White Pine		24 Good
186 White Pine		24 Good
187 White Pine		48 Good

100 6		
188 Cedar		10 Good
189 White Pine		12 Good
190 Red Maple		36 Poor
191 White Ash		10 Dead
192 Cedar		6 Good
193 Cedar		12 Good
194 Red Maple Double	12 and 12	Good
195 White Pine		12 Good
196 Black Cherry		6 Good
197 White Ash		6 Dead
198 White Ash		6 Dead
199 Black Cherry		6 good
200 White Pine		12 Good
201 Cedar		12 Good
202 Black Cherry		12 Good
203 White Ash		12 Dead
204 White Ash		6 Dead
205 Red Maple		16 Good
206 White Pine		32 Good
207 White Oak		24 Good
208 White Pine		36 Good
209 White Pine		36 Good
210 Cedar		10 Good
211 Black Cherry		6 Good
212 White Pine		36 Good
213 Cedar		12 Good
214 Cedar		12 Good
215 White Pine		36 Good
216 White Pine		36 Good
217 White Pine		12 Good
218 White Pine		36 Good
219 White Pine		36 Good
220 White Pine		42 Good
221 White Pine		36 Good
222 White Pine		18 Good
223 White Pine		36 Good
224 Cedar		10 Good
225 White Pine Double	48 Total	Good
226 Black Cherry		8 Good
227 Cedar		6 Good
228 White Ash		10 Poor
229 Crab Apple		10 P001 12 Good
230 White Pine		24 Dead
	48 Total	Good
232 Black Oak		12 Good
233 Black Oak		12 G00d 10 Good
234 Black Cherry		
201 Black cherry		10 Good

235 Black Cherry	18 Good
236 Black Locust	18 Good
237 White Pine	36 Good
238 Cedar	6 Good
239 Cedar	6 Good
240 White Pine	42 Good
241 White Pine	36 Good
242 White Pine	24 Good
243 White Pine	24 Good
244 White Pine	36 Good
245 White Pine	18 Dead
246 White Ash	12 Dead

APPENDIX H

Stormwater Management Report

STORMWATER MANAGEMENT REPORT

Prepared For: Claudio Sena 146 Georgetown Road Boxford, MA 01921

Prepared By:

MF Engineering & Design 966 Hyde Park Avenue #303 Boston, MA 02136

Date: September 27, 2021

Table of Contents

1	Intro	oduction1
	1.1	Existing Conditions1
	1.2	Proposed Conditions
2	Stor	mwater Management2
	2.1	Method of Calculation2
	2.2	Sources of Data2
	2.3	Rainfall Depths2
	2.4	Soil Conditions2
	2.5	Existing Stormwater Management
	2.5.1	Existing Watershed3
	2.6	Proposed Stormwater Management
	2.6.1	Proposed Watershed3
3	Mas	sDEP Stormwater Management Standards4
	3.1	Standard 1 – No New Untreated Discharges
	3.2	Standard 2 – Peak Rate Attenuation
	3.3	Standard 3 – Recharge
	3.4	Standard 4 – Water Quality
	3.5	Standard 5 – Land Uses with Higher Potential Pollutant Loads5
	3.6	Standard 6 – Critical Areas
	3.7	Standard 7 – Redevelopment Projects
	3.8	Standard 8 – Construction Period Pollution Prevention and Erosion and Sedimentation Control 5
	3.9	Standard 9 – Operations and Maintenance Plan5
	3.10	Standard 10 – Prohibition of Illicit Discharges5
4	Con	clusion6

List of Tables

Table 1	Rainfall Depths	2
Table 2	Comparison of Peak Runoff Rates – Design Point 1	.4
Table 3	Comparison of Peak Runoff Volumes – Design Point 1	.4

List of Appendices

Appendix A – Figures

- Figure 1 USGS Locus Map
- Figure 2 Pre-Construction Drainage Figure
- Figure 3 Post-Construction Drainage Figure
- Appendix B Subsurface Exploration Data
- Appendix C MassDEP Checklist for Stormwater Report
- Appendix D HydroCAD Reports
- Appendix E Recharge Calculations
- Appendix F Water Quality Calculations
- Appendix G TSS Removal Calculations
- Appendix H MassDEP Critical Area Discharge Authorization
- Appendix I Long-Term Pollution Prevention Plan (LTPP) and Stormwater Operation & Maintenance Plan
- Appendix J Illicit Discharge Compliance Statement

1 Introduction

This Stormwater Management Report, prepared in accordance with Massachusetts Department of Environmental Protection (MassDEP) Stormwater Management Standards and the Town of Boxford Stormwater Management Standards, summarizes the Stormwater Management Plan and associated analyses for the proposed single home residence located at 146 Georgetown Road in Boxford, Massachusetts. A United States Geological Survey (USGS) Locus Map is provided as Figure 1 in Appendix A.

This stormwater report provides an analysis comparing the pre-development watershed condition to the post development, watershed figures provided as Figure 2 Pre-development and Figure 3 Post-development in Appendix A. This analysis is achieved through the surface runoff rates and volumes calculations described further in the comparison tables. Post-development calculations are accomplished through the implementation of stormwater managements strategies to address all of stormwater standards.

The following sections describe the existing and proposed stormwater management strategies. The report will further analyze the stormwater implementation and summarize compliance with applicable stormwater regulations.

1.1 Existing Conditions

The project site is a corner vacant land lot at the intersection of Georgetown Road and Ipswich Road with 3.16 Acres alongside Stevens Pond. The northern portion of the site is where contains the majority of wooded area and the southern portion of the site is mostly lawn area with some woods along Stevens Pond. There is a bordering vegetated wetland (BVW) located along southwest portion of the site bordering Stevens Pond. The project site is bounded by residential properties to the east and south directions located within the Residence-Agricultural (RA) zoning district.

The project site topography is generally flat with elevations ranging from 124 on the northeast part of the lot to 119 on the south part of the lot and lowest elevation of 112 on back of the lot near Steven Pond, elevations referenced to the North American Vertical Datum of 1988 (NAVD88). Stormwater runoff from the site predominantly flows from northeast to the south eventually reaching Stevens Pond without any stormwater management practice.

The project site is partially within a rare species habitat. The rare species habitat is identified as PH-1999 on the Natural Heritage and Endangered Species Program (NHESP).

1.2 Proposed Conditions

The design of the proposed stormwater management system is to collect, treat and infiltrate runoff from the impervious areas. Impervious areas on site are the driveway, roof and patio areas. The total impervious area will only occupy approximately 0.37 Acres which is less than 12% of the project site.

Impervious areas runoffs are effectively managed by a vegetated drainage swale, rain garden, driveway infiltration trench and infiltration system from Cultec. Runoff from the driveway near Georgetown Road will be collected on the infiltration trenches, as the driveway approaches the new home the runoff will sheet flow to the sides, and near the home as approaches the garage entrance the runoff will be collected at a garage drain which will eventually reach the infiltration system with an overflow pipe to the rain garden. Vegetated swales will collect the project site sheet flow runoff to discharge to the rain garden. Roof runoff is collected in gutters and downspouts and are all directed to the rain garden. The rain garden have an overflow discharge with stone protection to the BVW.

2 Stormwater Management

2.1 Method of Calculation

The hydrologic model was created and calculated with HydroCAD[®], Version 10.0 software, developed by HydroCAD[®] Software Solutions LLC, to analyze the hydrology of the Project Site. Hydraulic calculations were performed utilizing the Rational Method to determine contributing flows, and the Manning's Equation to determine pipe flows.

2.2 Sources of Data

The following sources of data were used for the hydrologic and hydraulic calculations:

- Soil Conservation Service (SCS) Technical Release No. 20 (TR-20)
- NRCS Soil Survey of Essex County, Massachusetts, Northern Part
- ASB Design Group subsurface exploration
- NOAA Precipitation Frequency Estimates

2.3 Rainfall Depths

In accordance with MassDEP Stormwater Management Policy and the Town of Boxford Stormwater Management Regulations Chapter 295, the 2-, 10-, 25-, 50- and 100-year, 24-hour storm events were analyzed. Table 1 indicates the rainfall depths used for each storm event, taken from Boxford Stormwater Management Regulations.

Storm Event	NOAA
2-Year, 24-Hour	3.24"
10-Year, 24-Hour	5.12"
25-Year, 24-Hour	6.29"
50-Year, 24-Hour	7.15"
100-Year, 24-Hour	8.10"

Table 1 Rainfall Depths

2.4 Soil Conditions

Natural Resources Conservation Service (NRCS) Essex County Soil Survey indicates that soils onsite consist of the following Hydrologic Soil Groups (HSG):

- 253A Hinckley loamy sand, 0-3% slopes, HSG A
- 253B Hinckley loamy sand, 3-8% slopes, HSG A

Subsurface exploration consisting of test pits have been performed by ASB Design Group LLC. Based on subsurface explorations, soil conditions at these locations consist of loamy sand and gravel sand. The NRCS Web Soil Survey and Stormwater Infiltration Data Report prepared by ASB Design Group LLC is provided in Appendix G.

2.5 Existing Stormwater Management

The current project site does not provide any naturally shaped stormwater treatment areas.

2.5.1 Existing Watershed

Under existing conditions, the site is divided into 1 Subcatchment area, Drainage Area P-1A. (refer to Appendix A - Figure 2 Pre-Development).

There is 1 point of analysis from the site:

• Design Point 1 – Southwestern portion of land at Steven Pond at a point that captures stormwater flow from the entire project site and parcel.

Drainage Area P-1A: Consists of a residential parcel along Georgetown Road with a mix of lawns, wooded area, roof and gravel drive. Within the drainage area the lowest elevation is 118 and the bottom elevation of pond is at 112.

2.6 Proposed Stormwater Management

The proposed project incorporates a stormwater management system that meets the guidelines in the 2008 MassDEP Stormwater Management Policy. Stormwater quality and quantity on the Site will be managed by implementing a series of best management practices (BMPs) that will include. The proposed BMPs are anticipated to remove a minimum of 99 percent of total suspended solids (TSS) from stormwater runoff, maintain the peak flow rates of stormwater runoff, and maintain the recharge rates to groundwater, as described in the MassDEP Stormwater Standards section of this report.

2.6.1 Proposed Watershed

Under existing conditions, the site is divided into 4 Subcatchment areas, Drainage Areas P-1, P-2, P-3 and P-4. (refer to Appendix A - Figure 3 Post-Development).

There is 1 point of analysis from the site:

• Design Point 1 – Southwestern portion of land at Steven Pond at a point that captures stormwater flow from the entire project site and parcel.

Drainage Area P-1: Consist of the driveway as approaches the downhill ramp into the garage and the proposed residence. Stormwater from this drainage area is directed to drainage inlet which directs flow to the infiltration system from Cultec and in overflow scenarios discharges to the Rain Garden.

Drainage Area P-2: Consist of lawn and wooded areas. Stormwater from this drainage area is directed to vegetated drainage swale which eventually reaches the rain garden.

Drainage Area P-3: Consist of the driveway area from the street as approaches the residence and lawn area. Stormwater from this drainage area is directed to the driveway infiltration trench.

Drainage Area P-4: Consist of lawn and wooded areas. Stormwater from this drainage area is directed to the driveway infiltration trench, rain garden through a vegetated swale and sheet flow directly to the Rain Garden.

3 MassDEP Stormwater Management Standards

The ten (10) MassDEP Stormwater Management Standards provided in the Stormwater Management Policy and Massachusetts Wetlands Protection Act relate to the protection of wetlands and water bodies, control of water quantity, recharge to groundwater, water quality and protection of critical areas, erosion/sedimentation control and stormwater maintenance. The MassDEP Checklist for Stormwater Report is provided in Appendix C, and the following sections summarize the Project's compliance with the Stormwater Management Standards.

3.1 Standard 1 – No New Untreated Discharges

The Project complies with Standard 1. No new point source discharges of untreated stormwater to or causing erosion in resource areas are proposed as part of the project. Stormwater discharge velocities for the project are mitigated by stone for pipe ends at various locations.

3.2 Standard 2 – Peak Rate Attenuation

The Project complies with Standard 2. The Project's stormwater management systems are designed so that post-development peak discharge rates do not exceed pre-development discharge rates for the 2-, 10-, 25-, 50- and 100-year, 24-hour storm events, and so that there will not be increased flooding impacts nor to the BVW and Stevens Pond. Post-development peak runoff and peak runoff volume are all 0, because our stormwater management strategy is attenuating all the proposed impervious area. Refer to Appendix D – Hydrocad Reports for further detail information.

Storm Event		Peak Runoff (cfs)	
(years)	Pre- Development	Post- Development	Δ
2	0	0	0
10	0.08	0	-0.08
25	0.48	0	-0.48
50	0.97	0	-0.97
100	1.95	0	-1.95

Table 2 Comparison of Peak Runoff Rates - Design Point 1

Table 3 Comparison of Peak Runoff Volumes – Design Point 1

Storm Event	Peak Runoff Volume (af)			
(years)	Pre- Development	Post- Development	Δ	
2	0.000	0.000	0.000	
10	0.040	0.000	-0.040	
25	0.101	0.000	-0.101	
50	0.159	0.000	-0.159	
100	0.235	0.000	-0.235	

3.3 Standard 3 – Recharge

The Project complies with Standard 3. The proposed stormwater management system incorporates the use of Rain Garden to provide the required groundwater recharge. Refer to Appendix E for Recharge Calculations.

3.4 Standard 4 – Water Quality

The Project complies with Standard 4. The incorporation of the described stormwater best management practices (BMPs) will achieve a cumulative Total Suspended Solids (TSS) removal rate greater than 80%, refer to Appendix G – TSS Removal Calculations. Refer to Appendix F for Water Quality Calculations and Appendix I for a copy of the Long-Term Pollution Prevention and Stormwater Operation & Maintenance Plan.

3.5 Standard 5 – Land Uses with Higher Potential Pollutant Loads

Standard 5 is not applicable to the Project. The Project is not considered a Land Use with Higher Potential for Pollutant Loads (LUHPPL) as defined in the Massachusetts Stormwater Handbook.

3.6 Standard 6 – Critical Areas

The project complies with Standard 6. The Project does not discharge stormwater within the Zone II or Interim Wellhead Protection Area of a public water supply, but in overflow scenarios form the rain garden will discharge near a Critical Area as defined in the Massachusetts Stormwater Handbook. As a result of this location, a copy of the Notice of Intent and supporting documentation (dated 05/21/21, revised 06/11/21) has been sent to NHESP and has been approved as shown on Appendix H.

3.7 Standard 7 – Redevelopment Projects

Standard 7 is not applicable to the Project. The Project does not qualify as a redevelopment project or other project subject to the Standards only to the maximum extent practicable.

3.8 Standard 8 – Construction Period Pollution Prevention and Erosion and Sedimentation Control

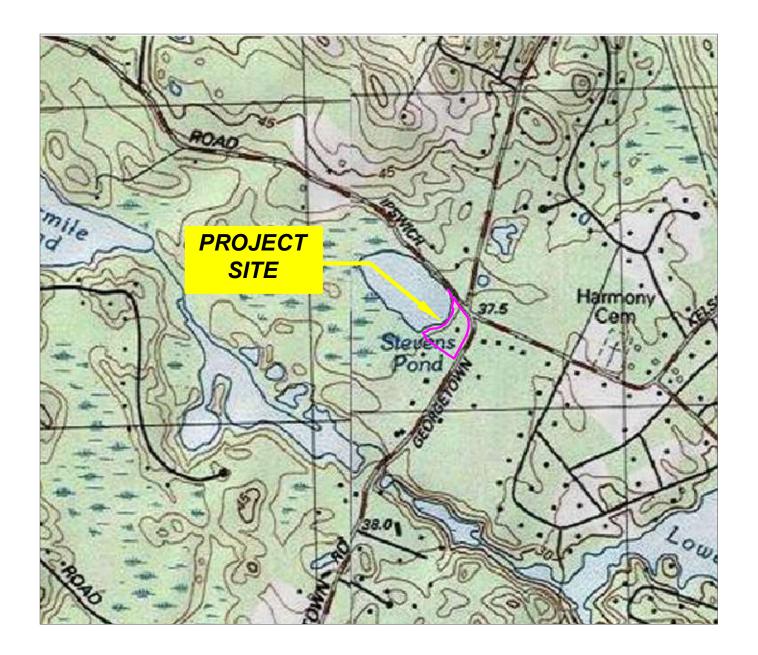
The project complies with Standard 8. The Project will result in the disturbance of greater than one (1) acre of land and requires coverage under the U.S. EPA National Pollutant Discharge Elimination System (NPDES) General Permit for Stormwater Discharges from Construction Activities (CGP). Prior to commencement of earth disturbing activities, a project-specific Storm Water Pollution Prevention Plan (SWPPP) will be prepared, and a Notice of Intent will be submitted to the EPA.

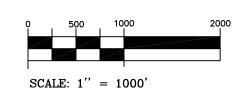
3.9 Standard 9 – Operations and Maintenance Plan

The Project complies with Standard 9. An Operations and Maintenance Plan to be implemented by the owner and its staff to ensure that stormwater management systems function as designed is provided in Appendix I.

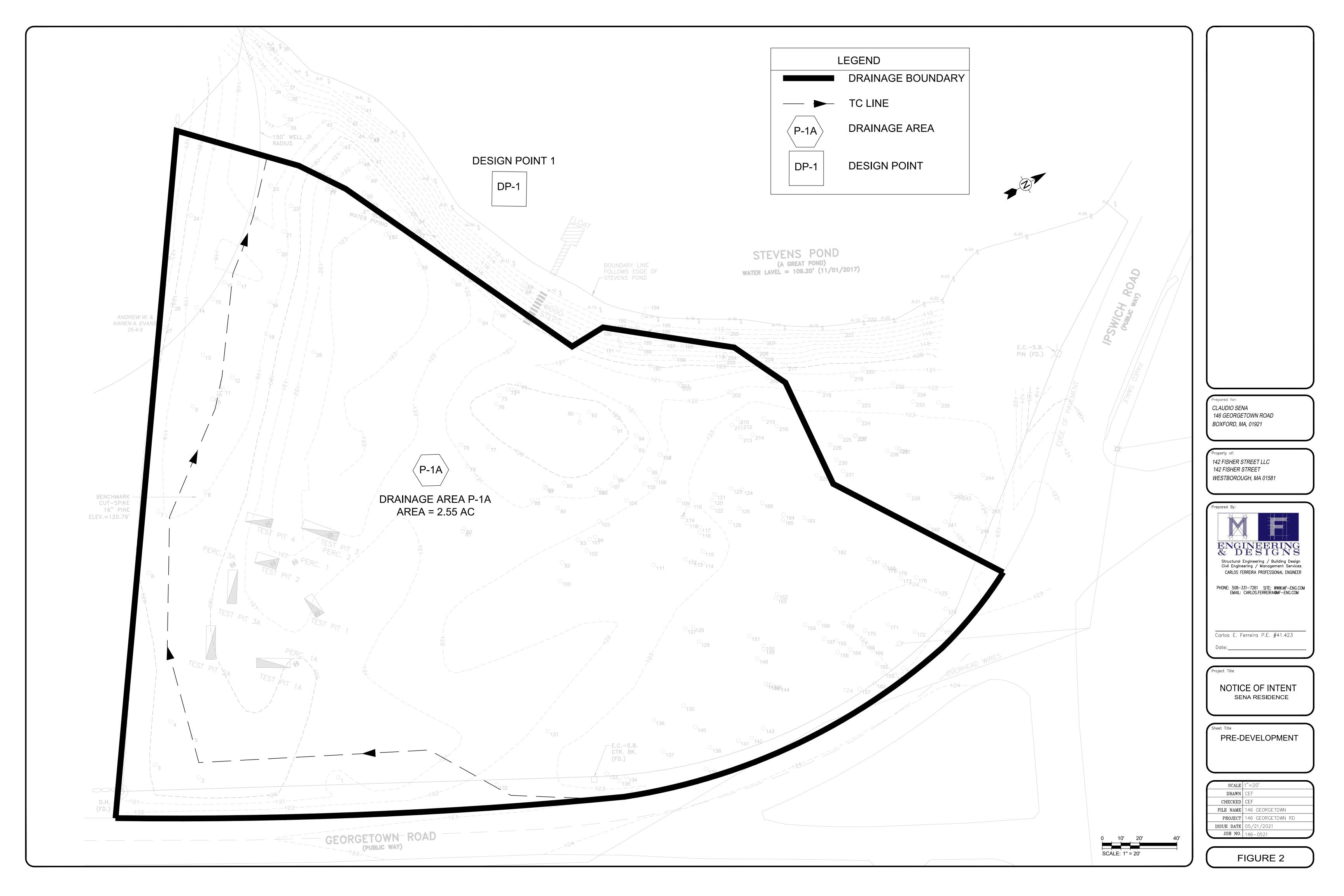
3.10 Standard 10 – Prohibition of Illicit Discharges

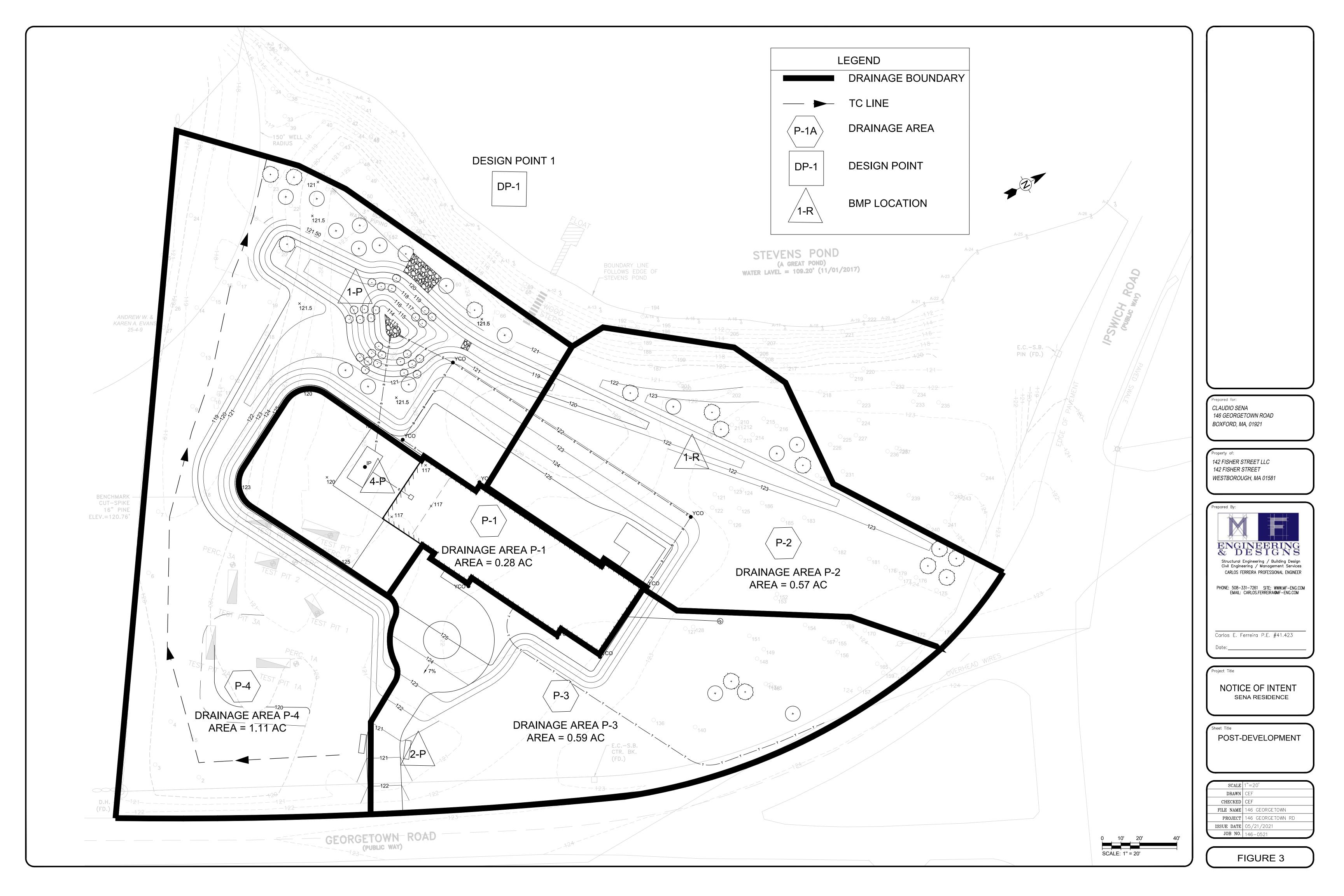
The Project complies with Standard 10. There are no known or designed illicit discharges on the project site. An Illicit Discharge Compliance Statement is provided in Appendix H.

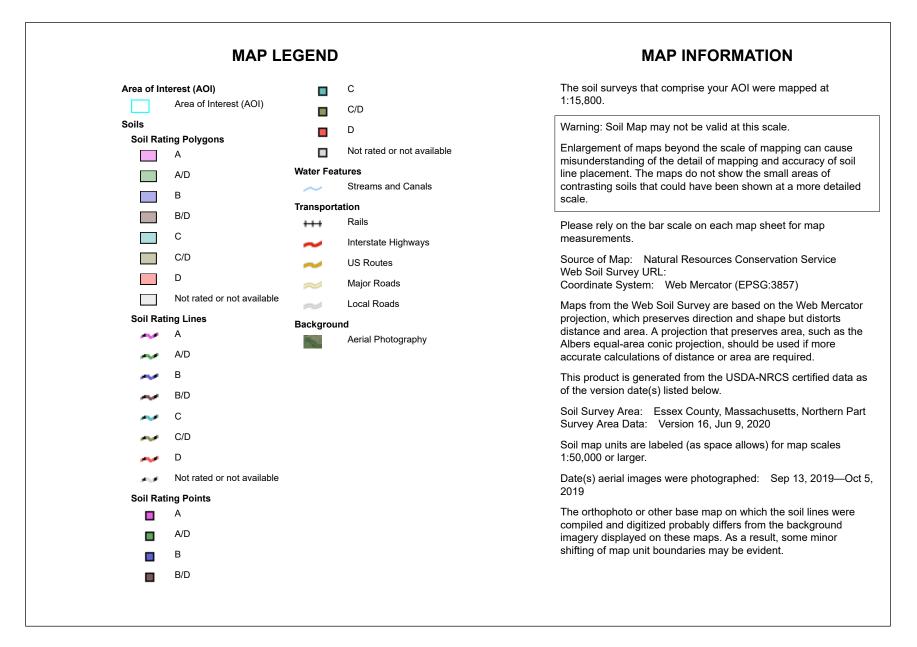



4 Conclusion

The Stormwater Management Plan addresses both the quantity and quality of stormwater runoff from the Project Site and conforms to the ten (10) MassDEP Stormwater Management Standards and Town of Boxford Stormwater Regulations. The Project will not have a negative impact on the surrounding areas, will be constructed in compliance with the U.S. EPA NPDES GCP, and will install stormwater BMPs to mitigate peak runoff rates while providing adequate recharge and treatment of stormwater runoff.


APPENDIX A


Figures



APPENDIX B

Subsurface Exploration Data

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

				D
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
253A	Hinckley loamy sand, 0 to 3 percent slopes	A	1.3	47.4%
253B	Hinckley loamy sand, 3 to 8 percent slopes	А	1.4	52.6%
Totals for Area of Interest			2.6	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

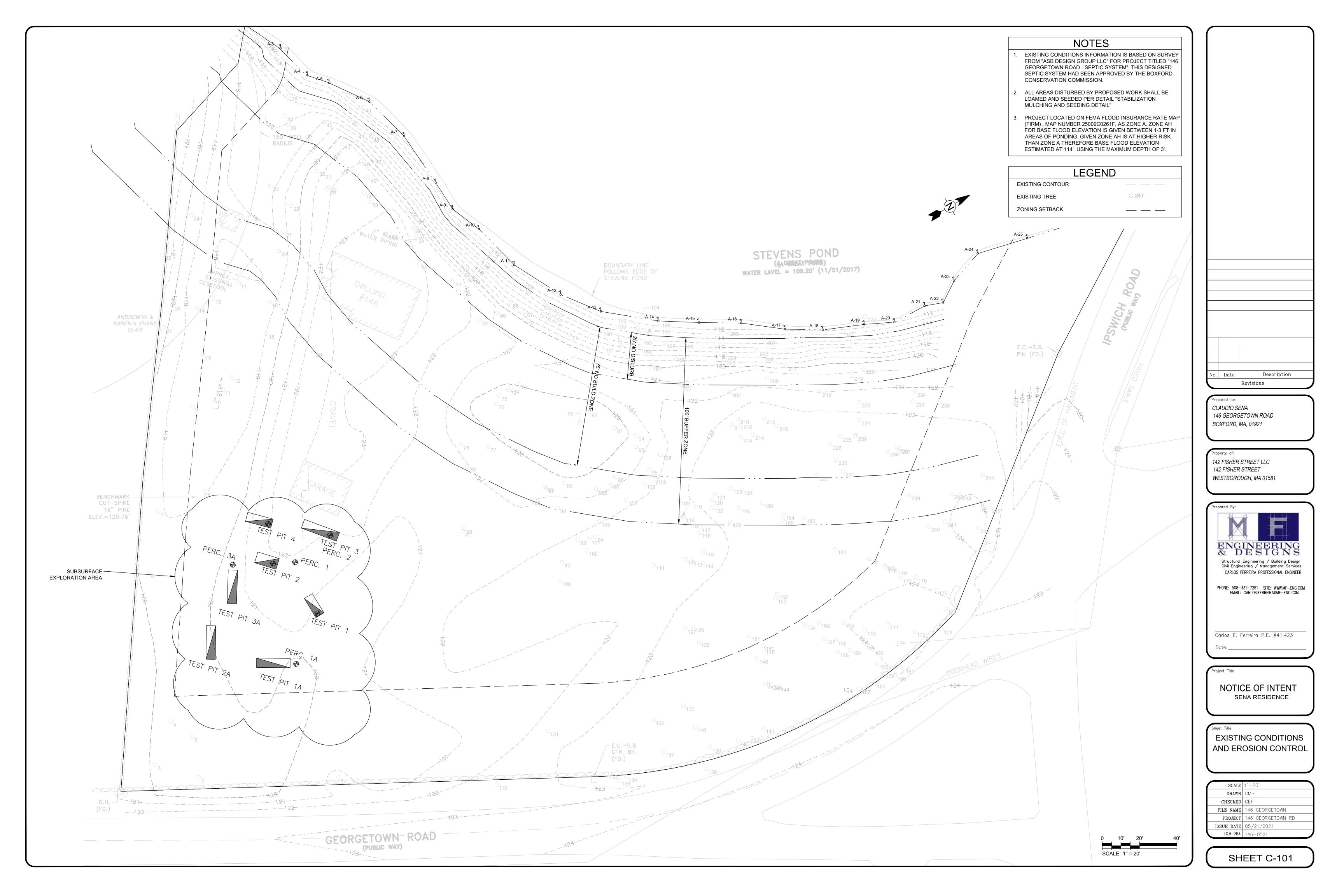
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

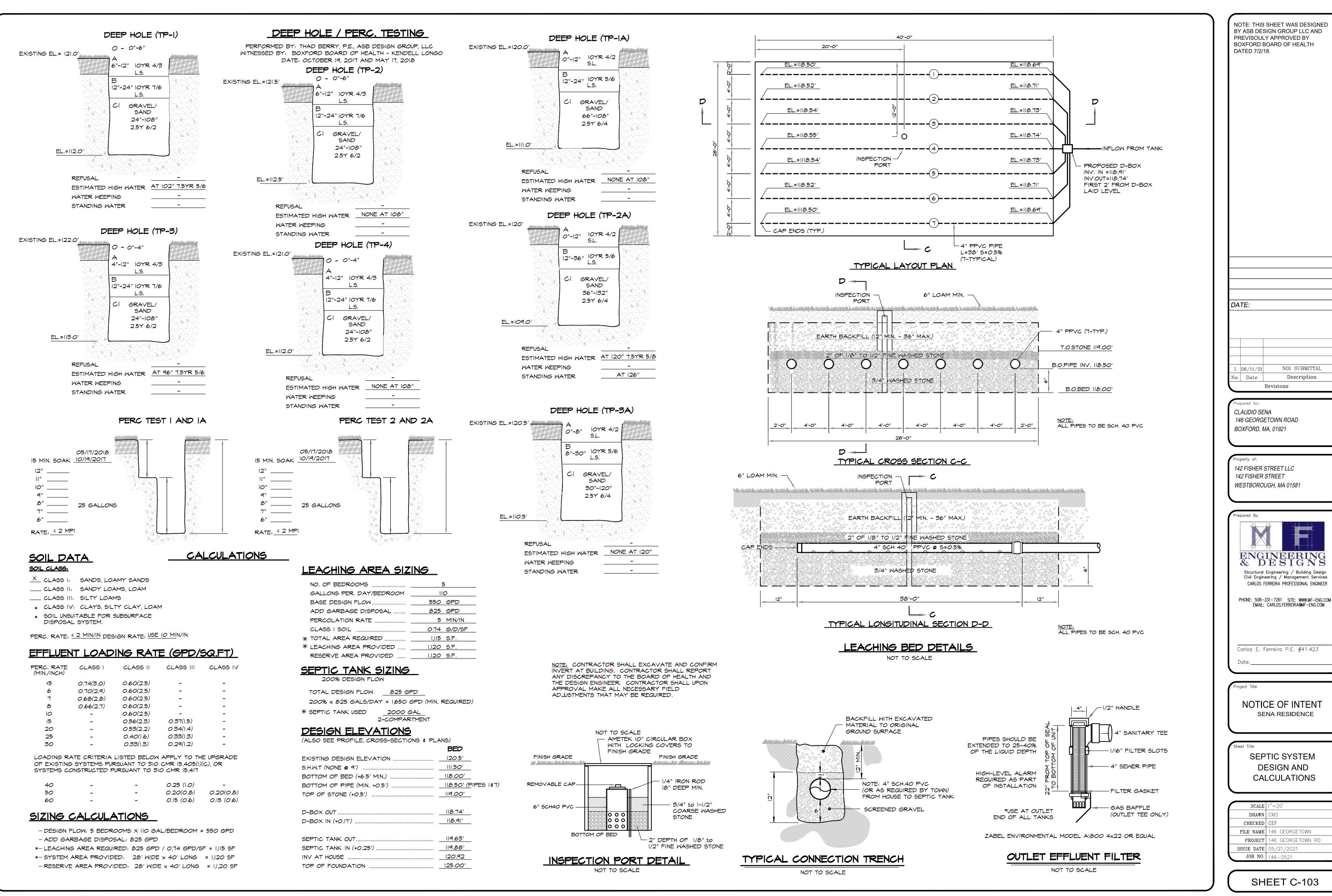
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

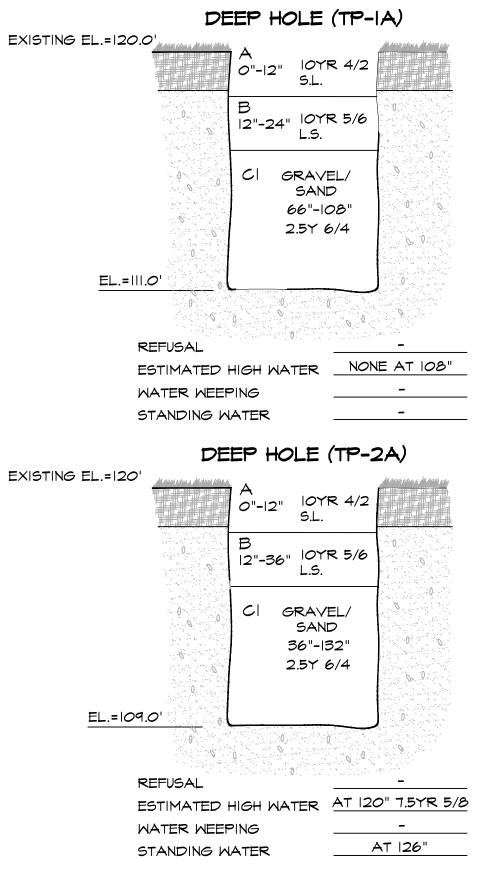
Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

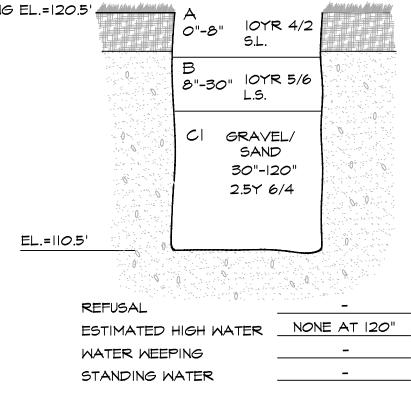
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

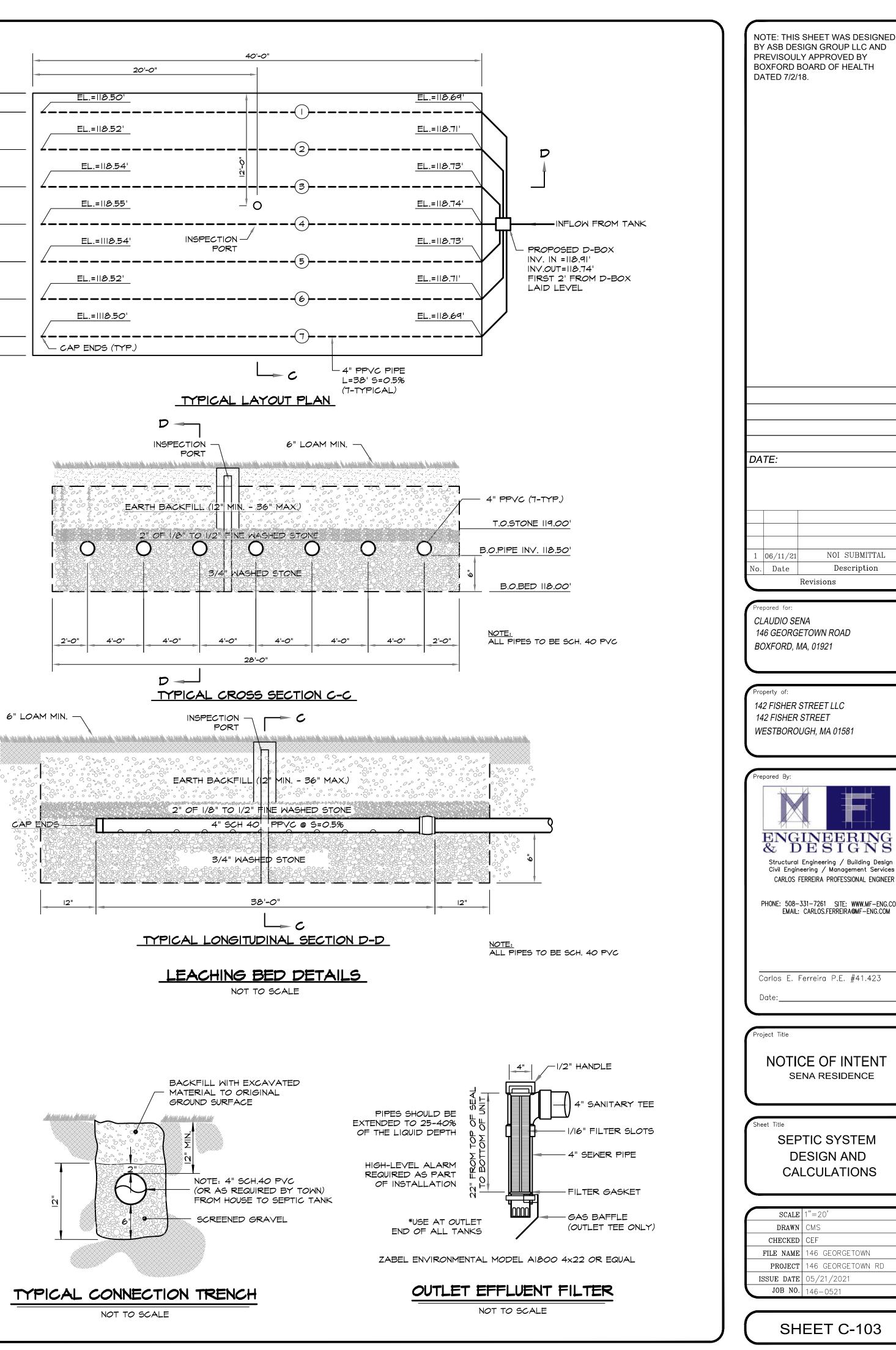
Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

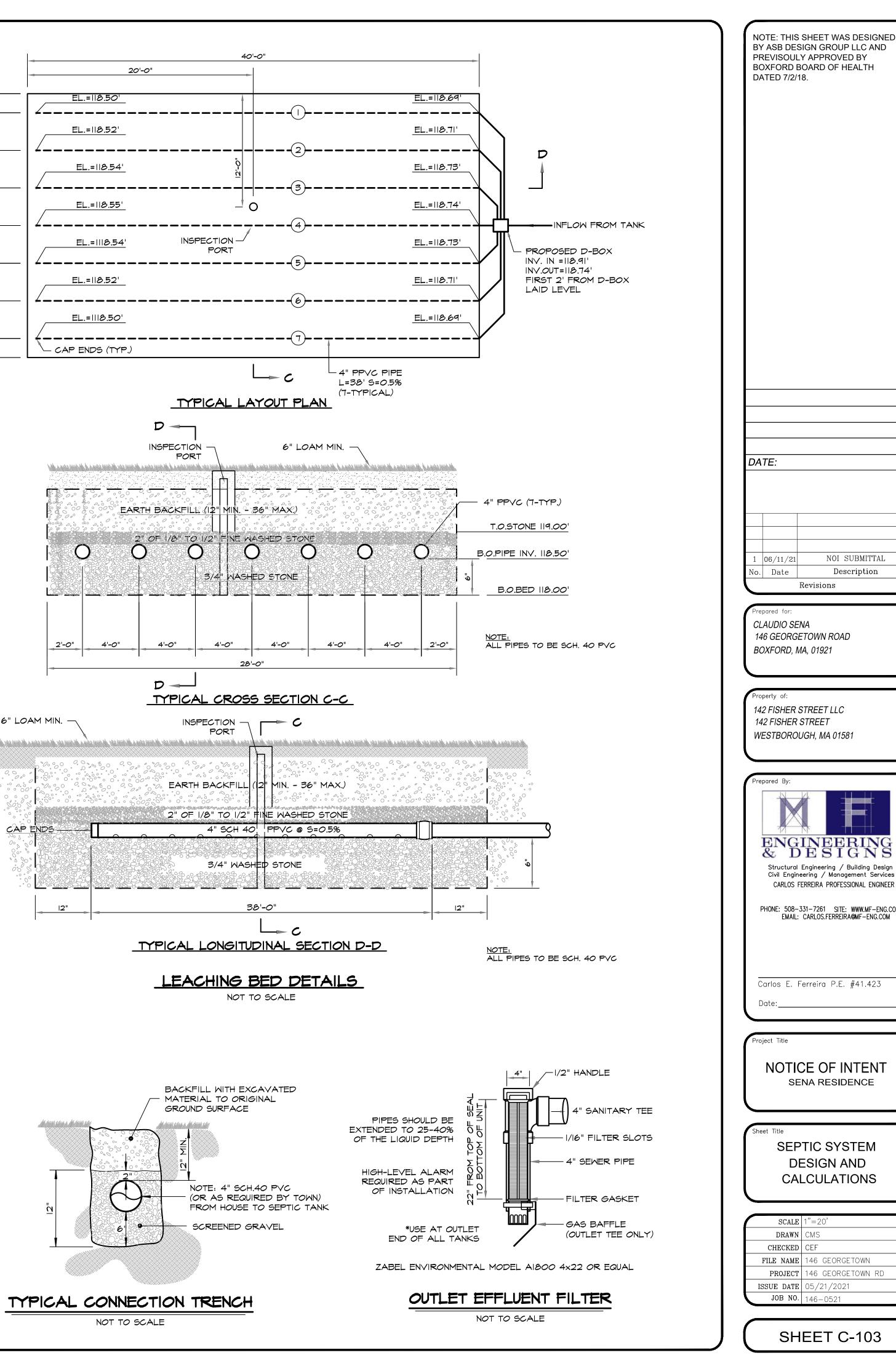

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.


Rating Options


Aggregation Method: Dominant Condition


USDA


Component Percent Cutoff: None Specified Tie-break Rule: Higher



APPENDIX C

MassDEP Checklist for Stormwater Report

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

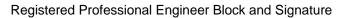
As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

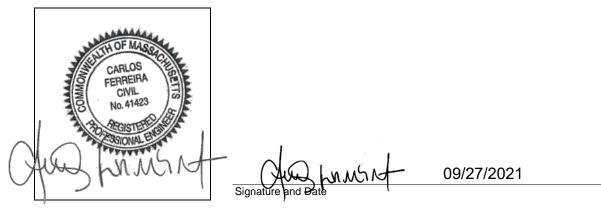
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

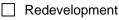

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.



Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\square	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
Z	Use of "country drainage" versus curb and gutter conveyance and pipe
\square	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
\square	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

$\mathbf{\nabla}$	Soil	Anal	ysis	provided.
-------------------	------	------	------	-----------

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

🗹 Static	Simple Dynamic
----------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\square	Recharge BMPs ha	ve been sized to	infiltrate the	Required Rech	arge Volume.
-----------	------------------	------------------	----------------	----------------------	--------------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - ☑ The ½" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- ☐ The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Project	ct
-----------------	----

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

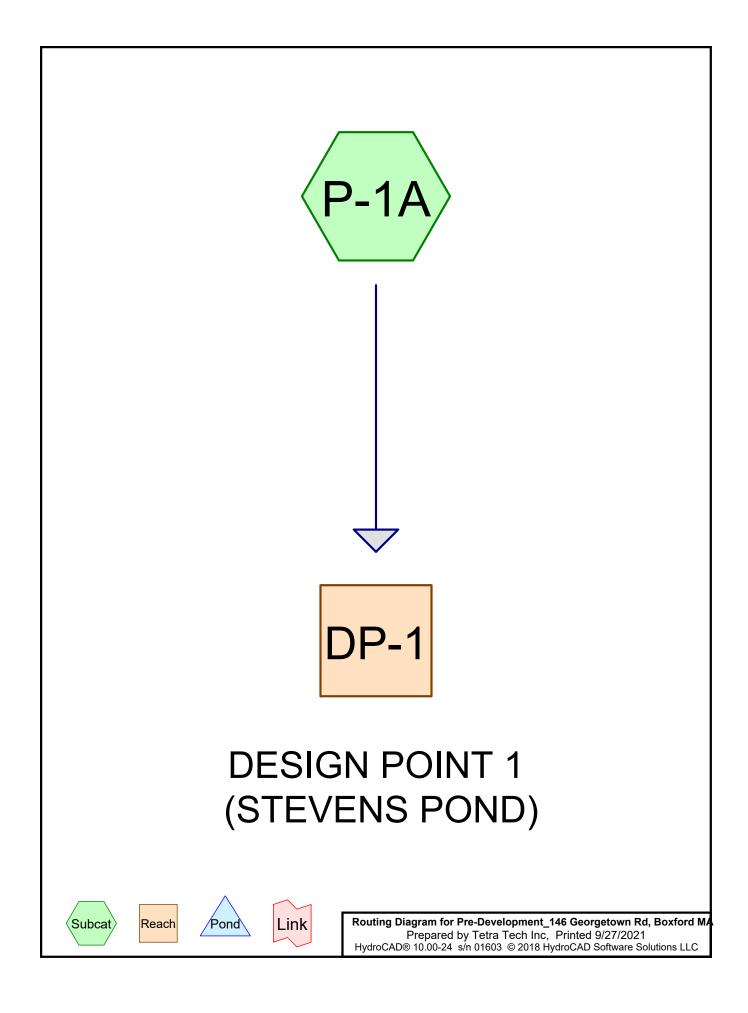
Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

The project is highly complex and information is included in the Stormwater Report that explains why
it is not possible to submit the Construction Period Pollution Prevention and Erosion and
Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and
Erosion and Sedimentation Control has <i>not</i> been included in the Stormwater Report but will be
submitted <i>before</i> land disturbance begins.

- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

\mathbf{V}	The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and
	includes the following information:


- Name of the stormwater management system owners;
- Party responsible for operation and maintenance;
- Schedule for implementation of routine and non-routine maintenance tasks;
- Plan showing the location of all stormwater BMPs maintenance access areas;
- Description and delineation of public safety features;
- Estimated operation and maintenance budget; and
- Operation and Maintenance Log Form.
- The responsible party is **not** the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

APPENDIX D

Hydrocad Reports

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.340	39	>75% Grass cover, Good, HSG A (P-1A)
0.120	96	Gravel surface, HSG A (P-1A)
0.010	98	Roofs, HSG B (P-1A)
1.080	30	Woods, Good, HSG A (P-1A)
2.550	38	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
2.540	HSG A	P-1A
0.010	HSG B	P-1A
0.000	HSG C	
0.000	HSG D	
0.000	Other	
2.550		TOTAL AREA

				-	-		
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 1.340	0.000	0.000	0.000	0.000	1.340	>75% Grass cover, Good	P-1A
0.120	0.000	0.000	0.000	0.000	0.120	Gravel surface	P-1A
0.000	0.010	0.000	0.000	0.000	0.010	Roofs	P-1A
1.080	0.000	0.000	0.000	0.000	1.080	Woods, Good	P-1A
2.540	0.010	0.000	0.000	0.000	2.550	TOTAL AREA	

Ground Covers (all nodes)

Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLCPage 5

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P-1A:

Runoff Area=2.550 ac 0.39% Impervious Runoff Depth=0.00" Flow Length=647' Tc=6.4 min CN=38 Runoff=0.00 cfs 0.000 af

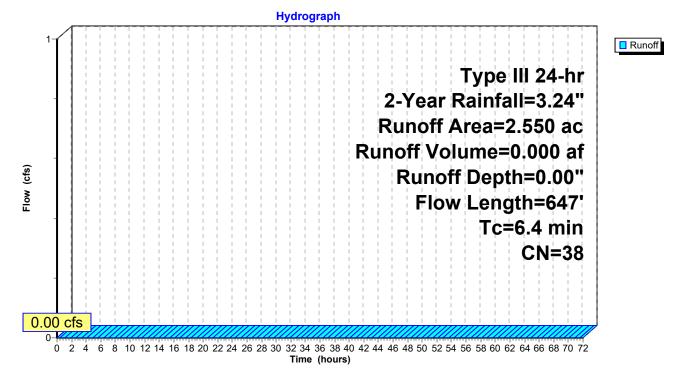
Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af

Total Runoff Area = 2.550 ac Runoff Volume = 0.000 af Average Runoff Depth = 0.00" 99.61% Pervious = 2.540 ac 0.39% Impervious = 0.010 ac Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted 9/27/2021HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLCPage 6

Summary for Subcatchment P-1A:

[45] Hint: Runoff=Zero

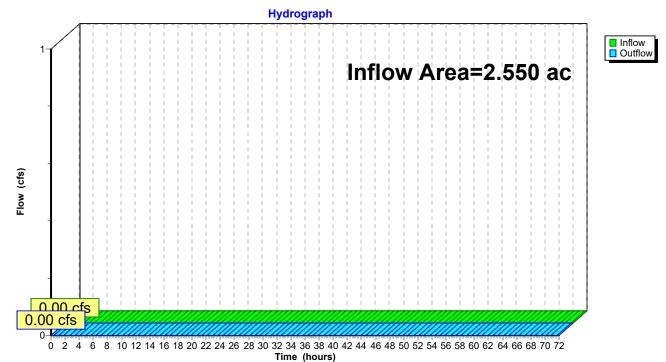

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.24"

Area	(ac) (CN Des	cription					
0.	0.010 98 Roofs, HSG B							
	1.340 39 >75% Grass cover, Good, HSG A							
	1.080 30 Woods, Good, HSG A							
0.	0.120 96 Gravel surface, HSG A							
2.	2.550 38 Weighted Average							
	.540		1% Pervio					
0.	.010	0.39	% Impervi	ous Area				
Та	Longth	Clana	Valacity	Consoitu	Description			
Tc	Length		Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.3	32	0.0480	1.61		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.43"			
6.0	578	0.0100	1.61		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
0.1	37	0.1400	5.61		Shallow Concentrated Flow, Shallow Concentrated			
					Grassed Waterway Kv= 15.0 fps			
6.4	647	Total						

Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLCPage 7

Subcatchment P-1A:


Summary for Reach DP-1: DESIGN POINT 1 (STEVENS POND)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		2.550 ac,	0.39% Impervious, In	flow Depth = $0.00"$	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr10-Year Rainfall=5.12"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLCPage 9

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P-1A:

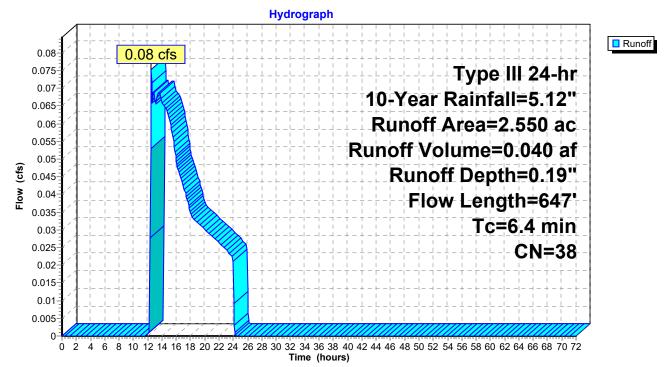
Runoff Area=2.550 ac 0.39% Impervious Runoff Depth=0.19" Flow Length=647' Tc=6.4 min CN=38 Runoff=0.08 cfs 0.040 af

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Inflow=0.08 cfs 0.040 af Outflow=0.08 cfs 0.040 af

Total Runoff Area = 2.550 ac Runoff Volume = 0.040 af Average Runoff Depth = 0.19" 99.61% Pervious = 2.540 ac 0.39% Impervious = 0.010 ac

Summary for Subcatchment P-1A:

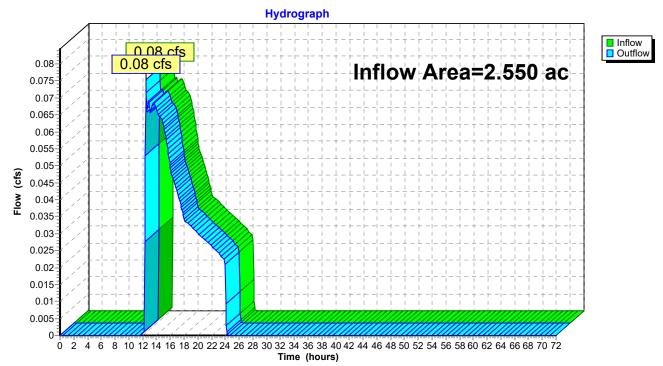

Runoff = 0.08 cfs @ 12.51 hrs, Volume= 0.040 af, Depth= 0.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.12"

0.010 98 Roofs, HSG B	
1.340 39 >75% Grass cover, Good, HSG A	
1.080 30 Woods, Good, HSG A	
0.120 96 Gravel surface, HSG A	
2.550 38 Weighted Average	
2.540 99.61% Pervious Area	
0.010 0.39% Impervious Area	
Tc Length Slope Velocity Capacity Description	
(min) (feet) (ft/ft) (ft/sec) (cfs)	
0.3 32 0.0480 1.61 Sheet Flow,	
Smooth surfaces n= 0.011 P2= 3.43"	1
6.0 578 0.0100 1.61 Shallow Concentrated Flow,	
Unpaved Kv= 16.1 fps	
0.1 37 0.1400 5.61 Shallow Concentrated Flow, Shallow	Concentrated
Grassed Waterway Kv= 15.0 fps	

6.4 647 Total

Subcatchment P-1A:



Summary for Reach DP-1: DESIGN POINT 1 (STEVENS POND)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.550 ac,	0.39% Impervious,	Inflow Depth = 0.1	9" for 10-Year event
Inflow	=	0.08 cfs @	12.51 hrs, Volume	e 0.040 af	
Outflow	=	0.08 cfs @	12.51 hrs, Volume	e= 0.040 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr25 Year Rainfall=6.29"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24s/n 01603© 2018 HydroCAD Software Solutions LLCPage 12

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P-1A:

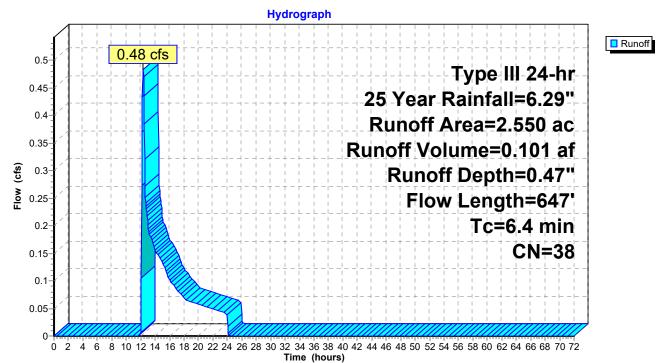
Runoff Area=2.550 ac 0.39% Impervious Runoff Depth=0.47" Flow Length=647' Tc=6.4 min CN=38 Runoff=0.48 cfs 0.101 af

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Inflow=0.48 cfs 0.101 af Outflow=0.48 cfs 0.101 af

Total Runoff Area = 2.550 ac Runoff Volume = 0.101 af Average Runoff Depth = 0.47" 99.61% Pervious = 2.540 ac 0.39% Impervious = 0.010 ac Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr25 Year Rainfall=6.29"Prepared by Tetra Tech IncPrinted 9/27/2021HydroCAD® 10.00-24s/n 01603© 2018 HydroCAD Software Solutions LLCPage 13

Summary for Subcatchment P-1A:

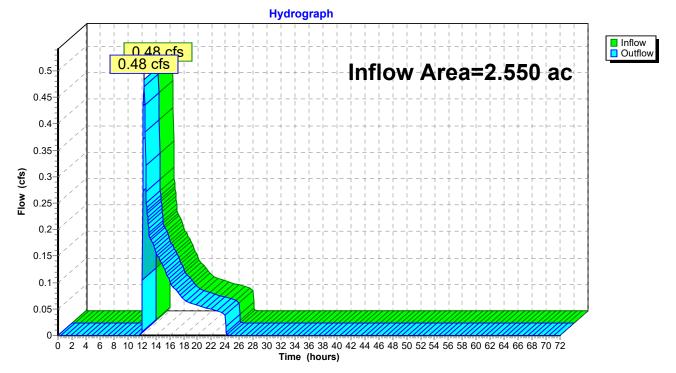

Runoff = 0.48 cfs @ 12.35 hrs, Volume= 0.101 af, Depth= 0.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.29"

_	Area	(ac) C	N Dese	cription		
	0.	010 9	98 Root	fs, HSG B		
	1.	340 3	39 >759	% Grass co	over, Good	, HSG A
	1.	080 3	30 Woo	ds, Good,	HSG A	
_	0.	120 9	96 Grav	el surface/	, HSG A	
	2.	550 3	38 Weig	ghted Aver	age	
	2.	540	99.6	1% Pervio	us Area	
	0.	010	0.39	% Impervi	ous Area	
	_				. .	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	32	0.0480	1.61		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.43"
	6.0	578	0.0100	1.61		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	37	0.1400	5.61		Shallow Concentrated Flow, Shallow Concentrated
_						Grassed Waterway Kv= 15.0 fps
	~ 4	0 4 7				

6.4 647 Total

Subcatchment P-1A:


Summary for Reach DP-1: DESIGN POINT 1 (STEVENS POND)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.550 ac,	0.39% Impervious, Infl	ow Depth = 0.47"	for 25 Year event
Inflow	=	0.48 cfs @	12.35 hrs, Volume=	0.101 af	
Outflow	=	0.48 cfs @	12.35 hrs, Volume=	0.101 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr50 Year Rainfall=7.15"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24s/n 01603© 2018 HydroCAD Software Solutions LLCPage 15

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P-1A:

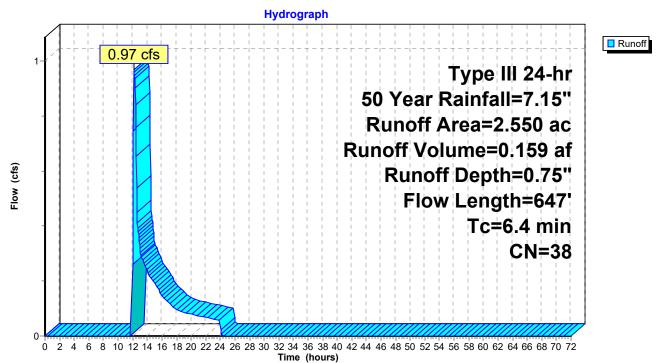
Runoff Area=2.550 ac 0.39% Impervious Runoff Depth=0.75" Flow Length=647' Tc=6.4 min CN=38 Runoff=0.97 cfs 0.159 af

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Inflow=0.97 cfs 0.159 af Outflow=0.97 cfs 0.159 af

Total Runoff Area = 2.550 ac Runoff Volume = 0.159 af Average Runoff Depth = 0.75" 99.61% Pervious = 2.540 ac 0.39% Impervious = 0.010 ac

Summary for Subcatchment P-1A:

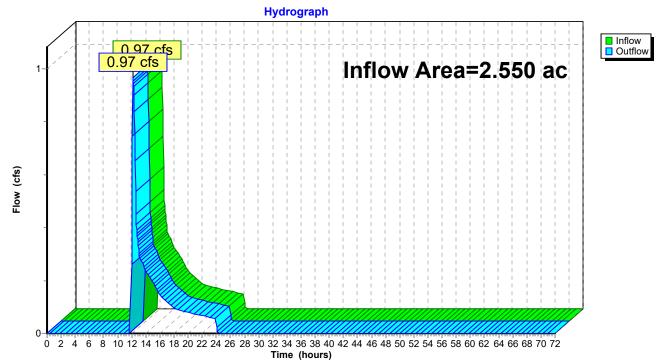

Runoff = 0.97 cfs @ 12.15 hrs, Volume= 0.159 af, Depth= 0.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.15"

_	Area	(ac) (CN Dese	cription		
	0.	010	98 Roo	fs, HSG B		
	1.	340	39 >759	% Grass co	over, Good	, HSG A
	1.	080	30 Woo	ds, Good,	HSG A	
_	0.	120	96 Grav	el surface/	, HSG A	
	2.	550	38 Weig	ghted Aver	age	
	2.	540	99.6	1% Pervio	us Area	
	0.	010	0.39	% Impervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	32	0.0480	1.61		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.43"
	6.0	578	0.0100	1.61		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	37	0.1400	5.61		Shallow Concentrated Flow, Shallow Concentrated
_						Grassed Waterway Kv= 15.0 fps

6.4 647 Total

Subcatchment P-1A:


Summary for Reach DP-1: DESIGN POINT 1 (STEVENS POND)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.550 ac,	0.39% Impervious, II	nflow Depth = 0.75"	for 50 Year event
Inflow	=	0.97 cfs @	12.15 hrs, Volume=	0.159 af	
Outflow	=	0.97 cfs @	12.15 hrs, Volume=	0.159 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Pre-Development_146 Georgetown Rd, Boxford MAType III 24-hr100-Year Rainfall=8.10"Prepared by Tetra Tech IncPrinted 9/27/2021HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLCPage 18

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P-1A:

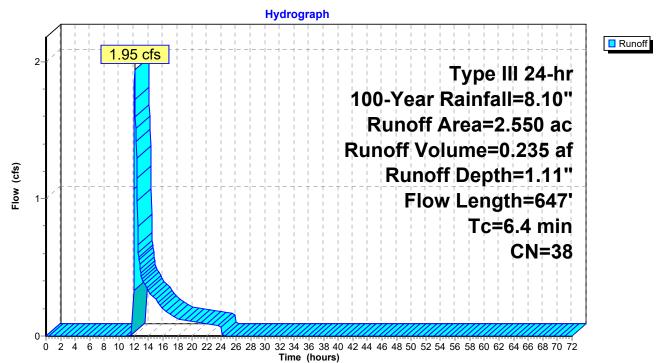
Runoff Area=2.550 ac 0.39% Impervious Runoff Depth=1.11" Flow Length=647' Tc=6.4 min CN=38 Runoff=1.95 cfs 0.235 af

Reach DP-1: DESIGN POINT 1 (STEVENS POND)

Inflow=1.95 cfs 0.235 af Outflow=1.95 cfs 0.235 af

Total Runoff Area = 2.550 ac Runoff Volume = 0.235 af Average Runoff Depth = 1.11" 99.61% Pervious = 2.540 ac 0.39% Impervious = 0.010 ac

Summary for Subcatchment P-1A:

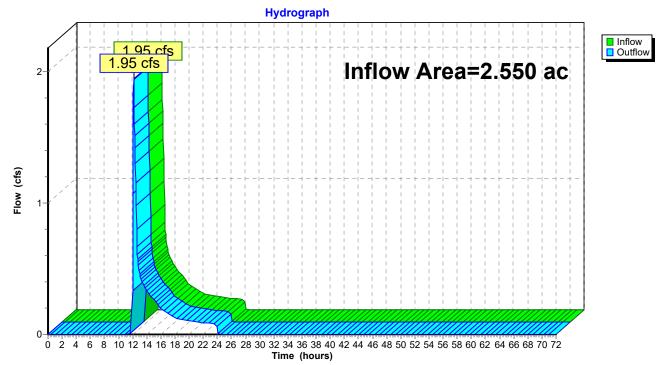

Runoff = 1.95 cfs @ 12.14 hrs, Volume= 0.235 af, Depth= 1.11"

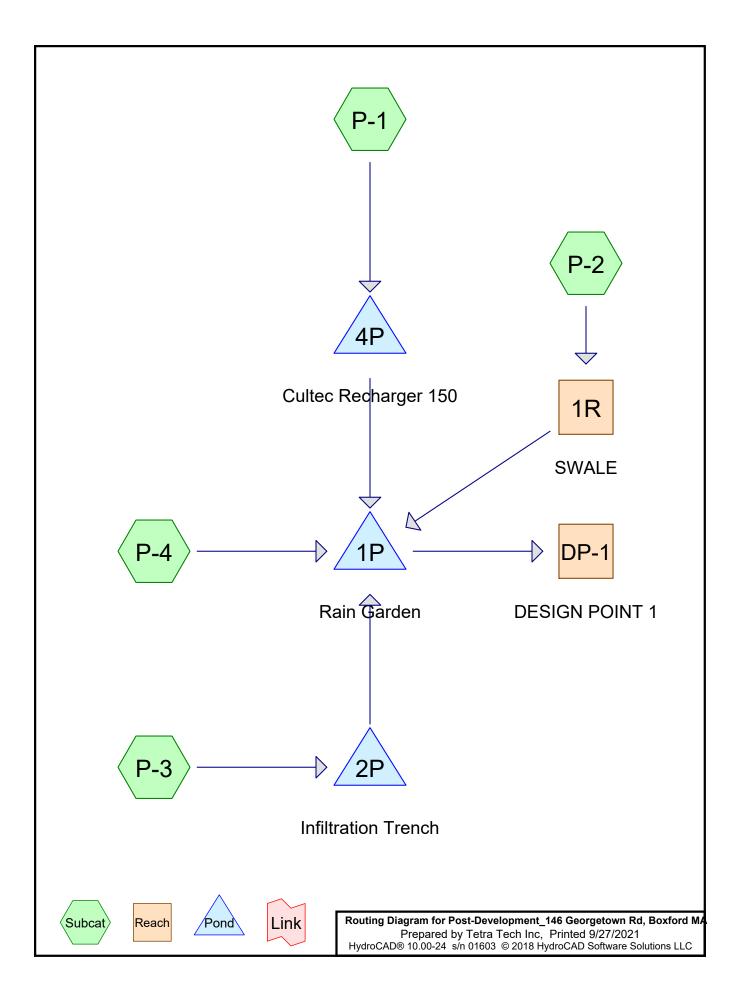
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.10"

_	Area	(ac) (N Dese	cription		
	0.	010	98 Roo	fs, HSG B		
	1.	340	39 >759	% Grass co	over, Good	, HSG A
	1.	080	30 Woo	ds, Good,	HSG A	
_	0.	120	96 Grav	el surface/	, HSG A	
	2.	550	38 Weig	ghted Aver	age	
	2.	540	99.6	1% Pervio	us Area	
	0.	010	0.39	% Impervi	ous Area	
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	32	0.0480	1.61		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.43"
	6.0	578	0.0100	1.61		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.1	37	0.1400	5.61		Shallow Concentrated Flow, Shallow Concentrated
						Grassed Waterway Kv= 15.0 fps

6.4 647 Total

Subcatchment P-1A:


Summary for Reach DP-1: DESIGN POINT 1 (STEVENS POND)


[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.550 ac,	0.39% Impervious, Infle	ow Depth = 1.11"	for 100-Year event
Inflow =	1.95 cfs @	12.14 hrs, Volume=	0.235 af	
Outflow =	1.95 cfs @	12.14 hrs, Volume=	0.235 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.140	39	>75% Grass cover, Good, HSG A (P-2, P-3, P-4)
0.230	98	Paved parking, HSG A (P-1, P-3)
0.150	98	Roofs, HSG A (P-1, P-2)
0.990	30	Woods, Good, HSG A (P-2, P-4)
2.510	44	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
2.510	HSG A	P-1, P-2, P-3, P-4
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
2.510		TOTAL AREA

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
1.140	0.000	0.000	0.000	0.000	1.140	>75% Grass cover, Good	P-2, P-3, P-4
0.230	0.000	0.000	0.000	0.000	0.230	Paved parking	P-1, P-3
0.150	0.000	0.000	0.000	0.000	0.150	Roofs	P-1, P-2
0.990	0.000	0.000	0.000	0.000	0.990	Woods, Good	P-2, P-4
2.510	0.000	0.000	0.000	0.000	2.510	TOTAL AREA	

Ground Covers (all nodes)

Post-Development_146 Georgetown Rd, Boxford MA								
Prepared by Tetra Tech Inc	Printed 9/27/2021							
HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLC	Page 5							

	Pipe Listing (all hodes)									
	Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
-	1	4P	114.50	113.00	69.0	0.0217	0.012	12.0	0.0	0.0

Pipe Listing (all nodes)

Post-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24s/n 01603© 2018 HydroCAD Software Solutions LLCPage 6

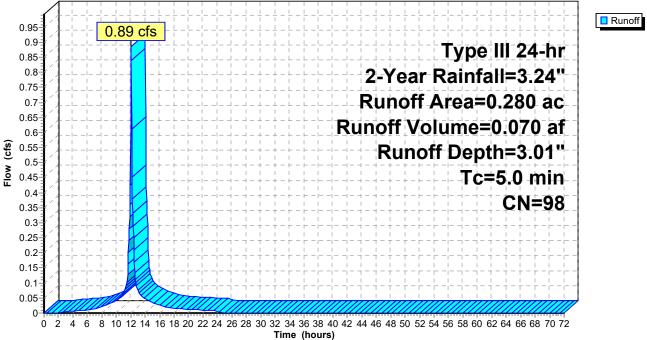
Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP-1:	Runoff Area=0.280 ac 100.00% Impervious Runoff Depth=3.01" Tc=5.0 min CN=98 Runoff=0.89 cfs 0.070 af
SubcatchmentP-2:	Runoff Area=0.520 ac 1.92% Impervious Runoff Depth=0.00" Tc=5.0 min CN=37 Runoff=0.00 cfs 0.000 af
SubcatchmentP-3:	Runoff Area=0.590 ac 15.25% Impervious Runoff Depth=0.10" Tc=5.0 min CN=48 Runoff=0.01 cfs 0.005 af
SubcatchmentP-4:	Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=0.00" Tc=5.0 min CN=32 Runoff=0.00 cfs 0.000 af
	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af =310.0' S=0.0065 '/' Capacity=5.81 cfs Outflow=0.00 cfs 0.000 af
Reach DP-1: DESIGN POINT 1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 1P: Rain Garden Discarded=0.05	Peak Elev=116.78' Storage=1,593 cf Inflow=0.87 cfs 0.060 af cfs 0.060 af Primary=0.00 cfs 0.000 af Outflow=0.05 cfs 0.060 af
Pond 2P: Infiltration Trench Discarded=0.01	Peak Elev=119.08' Storage=0.000 af Inflow=0.01 cfs 0.005 af cfs 0.005 af Primary=0.00 cfs 0.000 af Outflow=0.01 cfs 0.005 af
Pond 4P: Cultec Recharger 150 Discarded=0.01	Peak Elev=115.44' Storage=67 cf Inflow=0.89 cfs 0.070 af cfs 0.011 af Primary=0.87 cfs 0.060 af Outflow=0.88 cfs 0.070 af
Total Runoff Area = 2.510	ac Runoff Volume = 0.075 af Average Runoff Depth = 0.36" 84.86% Pervious = 2.130 ac 15.14% Impervious = 0.380 ac

Post-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted 9/27/2021HydroCAD® 10.00-24 s/n 01603 © 2018 HydroCAD Software Solutions LLCPage 7

Summary for Subcatchment P-1:

[49] Hint: Tc<2dt may require smaller dt

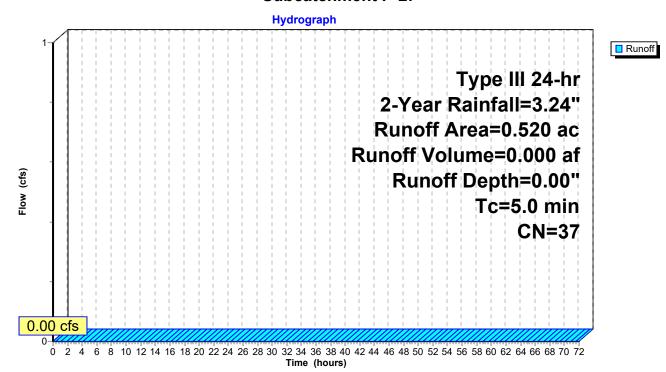

Runoff = 0.89 cfs @ 12.07 hrs, Volume= 0.070 af, Depth= 3.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.24"

Area	(ac)	CN	Desc	cription		
0.	.140	98	Pave	ed parking	, HSG A	
0.	.140	98	Roof	s, HSG A		
0.	.280	98	Weig	ghted Aver	age	
0.	.280		100.	00% Impe	rvious Area	3
Tc	Leng		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry, Min Tc
						• •

Subcatchment P-1:

Summary for Subcatchment P-2:


[49] Hint: Tc<2dt may require smaller dt [45] Hint: Runoff=Zero

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

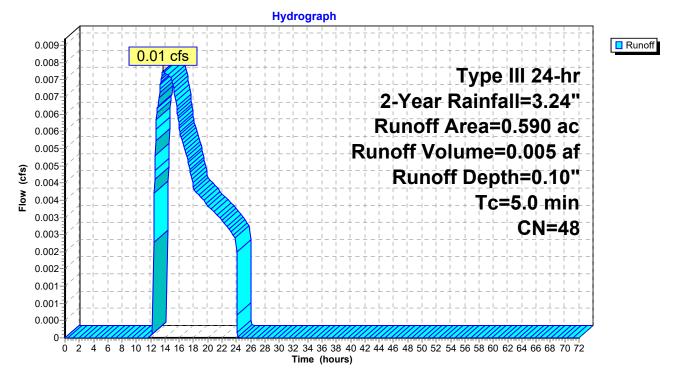
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.24"

Area (ac)) CN	Desc	cription		
0.340) 39	>75	% Grass co	over, Good	, HSG A
0.010) 98	Root	fs, HSG A		
0.170) 30	Woo	ds, Good,	HSG A	
0.520) 37	Weig	ghted Aver	age	
0.510)	98.0	8% Pervio	us Area	
0.010	0.010 1.92% Impervious Area				
	ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0					Direct Entry, Min Tc

Subcatchment P-2:

Post-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24s/n 01603© 2018 HydroCAD Software Solutions LLCPage 9

Summary for Subcatchment P-3:


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.01 cfs @ 13.76 hrs, Volume= 0.005 af, Depth= 0.10"

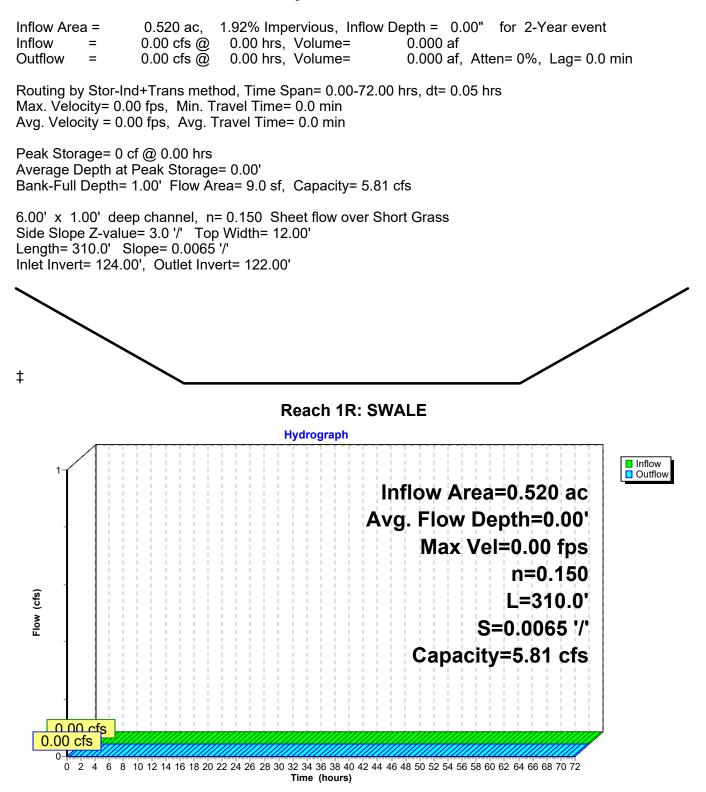
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.24"

_	Area	(ac)	CN	Desc	cription		
	0.	090	98	Pave	ed parking,	, HSG A	
	0.	500	39	>75%	6 Grass co	over, Good,	HSG A
	0.	590	48	Weig	hted Aver	age	
	0.500 84.75% Pervious Area						
	0.	090		15.2	5% Imperv	vious Area	
	Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	5.0						Direct Entry, Min Tc

Subcatchment P-3:

Summary for Subcatchment P-4:

[49] Hint: Tc<2dt may require smaller dt [45] Hint: Runoff=Zero

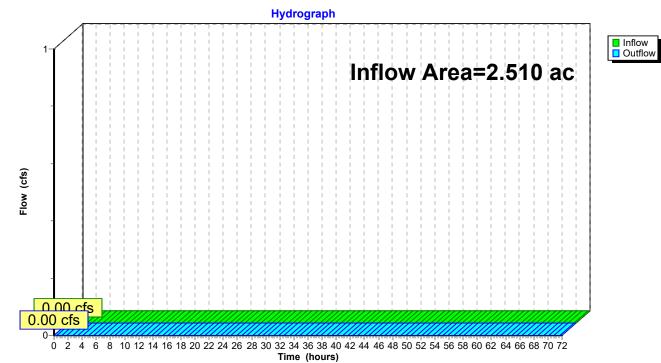

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.24"

Area (ac)CNDescription0.30039>75% Grass cover, Good0.82030Woods, Good, HSG A1.12032Weighted Average1.120100.00% Pervious AreaTcLengthSlopeVelocityCapacityCapacity					
(min) (feet) (ft/ft) (ft/sec) (cfs) 5.0	Direct Entry Min To				
	5.0 Direct Entry, Min Tc Subcatchment P-4:				
Hydro	ograph				
	Type III 24-hr 2-Year Rainfall=3.24" Runoff Area=1.120 ac Runoff Volume=0.000 af Runoff Depth=0.00" Tc=5.0 min CN=32				

Post-Development_146 Georgetown Rd, Boxford MAType III 24-hr2-Year Rainfall=3.24"Prepared by Tetra Tech IncPrinted9/27/2021HydroCAD® 10.00-24s/n 01603© 2018 HydroCAD Software Solutions LLCPage 11

Summary for Reach 1R: SWALE



Summary for Reach DP-1: DESIGN POINT 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.510 ac, 1	5.14% Impervious, Ii	nflow Depth = 0.00"	for 2-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, At	ten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

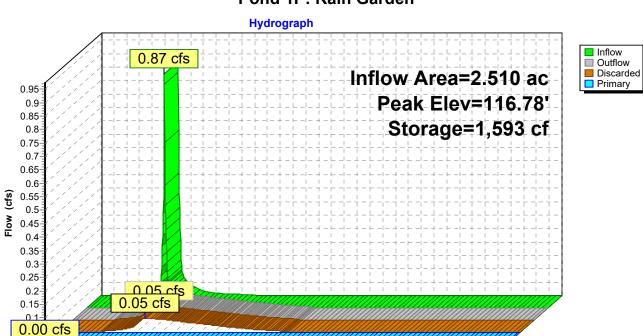
Reach DP-1: DESIGN POINT 1

Summary for Pond 1P: Rain Garden

Used more restrictive B layer

[81] Warning: Exceeded Pond 4P by 1.71' @ 13.75 hrs

Inflow Area =	2.510 ac, 15.14% Impervious, Inflow De	epth = 0.28" for 2-Year event
Inflow =	0.87 cfs @ 12.07 hrs, Volume=	0.060 af
Outflow =	0.05 cfs @ 13.49 hrs, Volume=	0.060 af, Atten= 94%, Lag= 85.3 min
Discarded =	0.05 cfs @ 13.49 hrs, Volume=	0.060 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 116.78' @ 13.49 hrs Surf.Area= 932 sf Storage= 1,593 cf

Plug-Flow detention time= 392.9 min calculated for 0.060 af (100% of inflow) Center-of-Mass det. time= 392.7 min (1,147.8 - 755.1)

Volume	Invert	Avail.Sto	rage Storage Description		
#1	113.00'	22,05	53 cf Cus t	tom Stage Data (P	rismatic)Listed below (Recalc)
	0			0	
Elevatio		urf.Area	Inc.Store		
(fee	et)	(sq-ft)	(cubic-feet)) (cubic-feet)	
113.0	00	60	C) 0	
114.(00	200	130	130	
115.0	00	404	302	432	
116.0	00	672	538	970	
117.0	00	1,007	840	1,810	
118.0	00	1,415	1,211	3,021	
119.0	00	2,202	1,809		
120.0	00	3,427	2,815		
121.0	00	4,655	4,041		
122.0	00	5,007	4,831		
123.0		6,068	5,538		
		-,	- ,)	
Device	Routing	Invert	Outlet Dev	vices	
#1	Primary	122.00'	30.0' long	x 3.0' breadth Br	oad-Crested Rectangular Weir
	,				0.80 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50	
					.68 2.67 2.65 2.64 2.64 2.68 2.68
				2.92 2.97 3.07 3	
#2	Discarded	113.00'			
π ∠	Distanceu	110.00	2.71011/11		

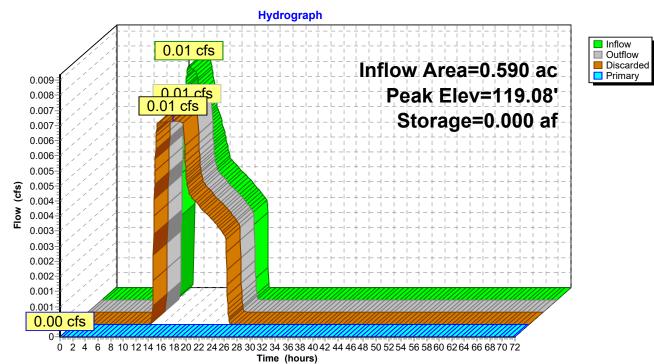
Discarded OutFlow Max=0.05 cfs @ 13.49 hrs HW=116.78' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.00' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Rain Garden

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 **Time (hours)**

Summary for Pond 2P: Infiltration Trench


Inflow Area =	0.590 ac, 15.25% Impervious, Inflow De	epth = 0.10" for 2-Year event
Inflow =	0.01 cfs @ 13.76 hrs, Volume=	0.005 af
Outflow =	0.01 cfs @ 15.62 hrs, Volume=	0.005 af, Atten= 13%, Lag= 111.2 min
Discarded =	0.01 cfs @ 15.62 hrs, Volume=	0.005 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 119.08' @ 15.62 hrs Surf.Area= 0.003 ac Storage= 0.000 af

Plug-Flow detention time= 13.6 min calculated for 0.005 af (100% of inflow) Center-of-Mass det. time= 13.6 min (1,048.9 - 1,035.3)

Volume	Invert	Avail.Storage	e Storage Description		
#1	119.00'	0.008 a	······································		
#2	119.00'	0.001 a	L= 20.0' af 18.0" Round Pipe Storage L= 18.0' S= 0.0500 '/'		
		0.009 a	af Total Available Storage		
Device	Routing	Invert C	Outlet Devices		
#1	Primary		72.0" x 120.0" Horiz. Orifice/Grate X 2.00 C= 0.600		
#2	Discarded	119.00' 2	2.410 in/hr Exfiltration over Surface area		
Discarded OutFlow Max=0.01 cfs @ 15.62 hrs HW=119.08' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.01 cfs)					

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=119.00' (Free Discharge)

Pond 2P: Infiltration Trench

Summary for Pond 4P: Cultec Recharger 150

Inflow Area =	0.280 ac,100.00% Impervious, Inflow De	epth = 3.01" for 2-Year event
Inflow =	0.89 cfs @ 12.07 hrs, Volume=	0.070 af
Outflow =	0.88 cfs @ 12.07 hrs, Volume=	0.070 af, Atten= 1%, Lag= 0.1 min
Discarded =	0.01 cfs @ 12.07 hrs, Volume=	0.011 af
Primary =	0.87 cfs @ 12.07 hrs, Volume=	0.060 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 115.44' @ 12.07 hrs Surf.Area= 62 sf Storage= 67 cf

Plug-Flow detention time= 20.1 min calculated for 0.070 af (100% of inflow) Center-of-Mass det. time= 20.4 min (775.6 - 755.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	114.00'	51 cf	4.75'W x 13.00'L x 2.54'H Field A
			157 cf Overall - 29 cf Embedded = 128 cf x 40.0% Voids
#2A	114.50'	29 cf	Cultec R-150XLHD Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 1 rows
#3	114.00'	18 cf	12.0" Round Pipe Storage-Impervious
			L= 23.0' S= 0.0100 '/'
		98 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.50'	12.0" Round Culvert
			L= 69.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 114.50' / 113.00' S= 0.0217 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Discarded	114.00'	2.410 in/hr Exfiltration over Wetted area
#3	Device 1	115.00'	1.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

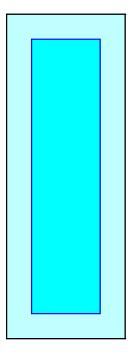
Discarded OutFlow Max=0.01 cfs @ 12.07 hrs HW=115.43' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

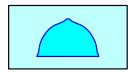
Primary OutFlow Max=0.84 cfs @ 12.07 hrs HW=115.43' (Free Discharge) 1=Culvert (Passes 0.84 cfs of 2.51 cfs potential flow) 3=Broad-Crested Rectangular Weir (Weir Controls 0.84 cfs @ 1.94 fps)

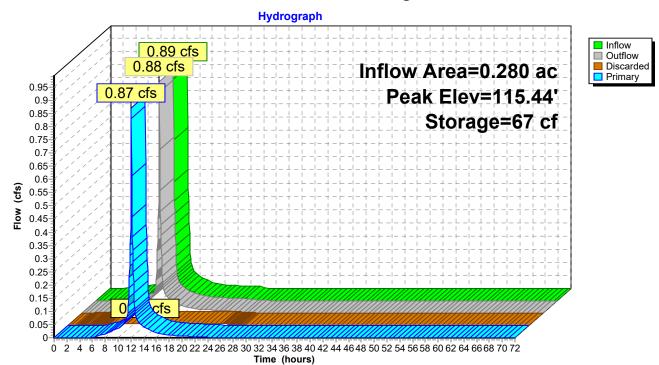
Pond 4P: Cultec Recharger 150 - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 1 rows


1 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 11.00' Row Length +12.0" End Stone x 2 = 13.00' Base Length
1 Rows x 33.0" Wide + 12.0" Side Stone x 2 = 4.75' Base Width
6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height


1 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 1 Rows = 29.1 cf Chamber Storage


156.9 cf Field - 29.1 cf Chambers = 127.8 cf Stone x 40.0% Voids = 51.1 cf Stone Storage

Chamber Storage + Stone Storage = 80.3 cf = 0.002 afOverall Storage Efficiency = 51.1%Overall System Size = $13.00' \times 4.75' \times 2.54'$

1 Chambers 5.8 cy Field 4.7 cy Stone

Pond 4P: Cultec Recharger 150

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP-1:	Runoff Area=0.280 ac 100.00% Impervious Runoff Depth=4.88" Tc=5.0 min CN=98 Runoff=1.41 cfs 0.114 af
SubcatchmentP-2:	Runoff Area=0.520 ac 1.92% Impervious Runoff Depth=0.16" Tc=5.0 min CN=37 Runoff=0.01 cfs 0.007 af
Subcatchment P-3:	Runoff Area=0.590 ac 15.25% Impervious Runoff Depth=0.63" Tc=5.0 min CN=48 Runoff=0.25 cfs 0.031 af
Subcatchment P-4:	Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=0.03" Tc=5.0 min CN=32 Runoff=0.00 cfs 0.003 af
Reach 1R: SWALE n=0.150 L	Avg. Flow Depth=0.02' Max Vel=0.07 fps Inflow=0.01 cfs 0.007 af =310.0' S=0.0065 '/' Capacity=5.81 cfs Outflow=0.01 cfs 0.007 af
Reach DP-1: DESIGN POINT 1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 1P: Rain Garden Discarded=0.08	Peak Elev=118.05' Storage=3,089 cf Inflow=1.39 cfs 0.129 af cfs 0.129 af Primary=0.00 cfs 0.000 af Outflow=0.08 cfs 0.129 af
Pond 2P: Infiltration Trench Discarded=0.01	Peak Elev=120.50' Storage=0.005 af Inflow=0.25 cfs 0.031 af cfs 0.013 af Primary=0.08 cfs 0.017 af Outflow=0.08 cfs 0.029 af
Pond 4P: Cultec Recharger 150 Discarded=0.01	Peak Elev=115.59' Storage=73 cf Inflow=1.41 cfs 0.114 af cfs 0.011 af Primary=1.39 cfs 0.103 af Outflow=1.40 cfs 0.114 af
Total Runoff Area = 2.510	ac Runoff Volume = 0.155 af Average Runoff Depth = 0.74" 84.86% Pervious = 2.130 ac 15.14% Impervious = 0.380 ac

Summary for Subcatchment P-1:

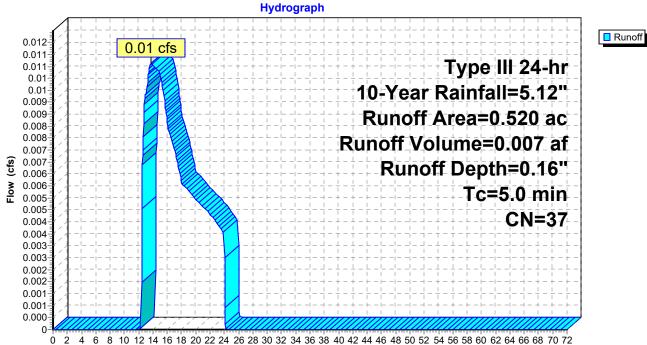
[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.41 cfs @ 12.07 hrs, Volume= 0.114 af, Depth= 4.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.12"

Area (ac) CN Descript	tion					
	0.140 98 Paved parking, HSG A						
0.140	,	d Average					
0.280		6 Impervious Area					
- ·							
		elocity Capacity t/sec) (cfs)	Description				
5.0	(1000) (1010) (1		Direct Entry, Min Tc				
		Subca	tchment P-1:				
		Hydrog					
Elow (cfs)	1.41 cfs		Type III 24-hr 10-Year Rainfall=5.12" Runoff Area=0.280 ac Runoff Volume=0.114 af Runoff Depth=4.88" Tc=5.0 min CN=98				

Summary for Subcatchment P-2:


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.01 cfs @ 13.74 hrs, Volume= 0.007 af, Depth= 0.16"

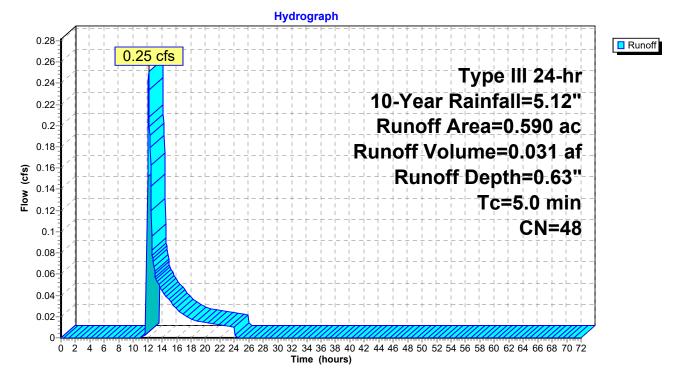
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.12"

Area	(ac)	CN	Desc	ription		
0.	340	39	>75%	6 Grass co	over, Good,	, HSG A
0.	010	98	Roof	s, HSG A		
0.	170	30	Woo	ds, Good,	HSG A	
0.	520	37	Weig	hted Aver	age	
0.	510		98.0	8% Pervio	us Area	
0.	010		1.92	% Impervi	ous Area	
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0	<u>,</u>	,	()		()	Direct Entry, Min Tc

Subcatchment P-2:

Time (hours)

Summary for Subcatchment P-3:


[49] Hint: Tc<2dt may require smaller dt

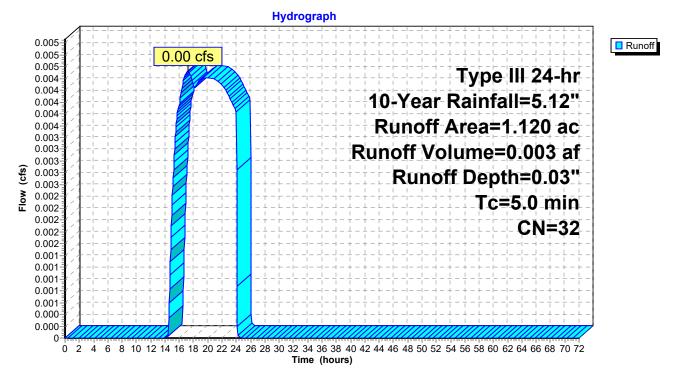
Runoff = 0.25 cfs @ 12.12 hrs, Volume= 0.031 af, Depth= 0.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.12"

Area	(ac)	CN	Desc	ription		
0	.090	98	Pave	d parking,	HSG A	
0	.500	39	>75%	6 Grass co	over, Good,	, HSG A
0	.590	48	Weig	hted Aver	age	
0	.500		84.7	5% Pervio	us Area	
0	.090		15.2	5% Imperv	vious Area	
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0						Direct Entry, Min Tc

Subcatchment P-3:

Summary for Subcatchment P-4:


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.00 cfs @ 17.17 hrs, Volume= 0.003 af, Depth= 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.12"

Area	(ac)	CN	Desc	cription		
0.	.300	39	>75%	% Grass co	over, Good	, HSG A
0.	.820	30	Woo	ds, Good,	HSG A	
1	.120	32	Weig	ghted Aver	age	
1.	.120		100.	00% Pervi	ous Area	
Та	امم	46	Clana	Volosity	Conseitu	Description
TC	Leng		Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry, Min Tc
						-

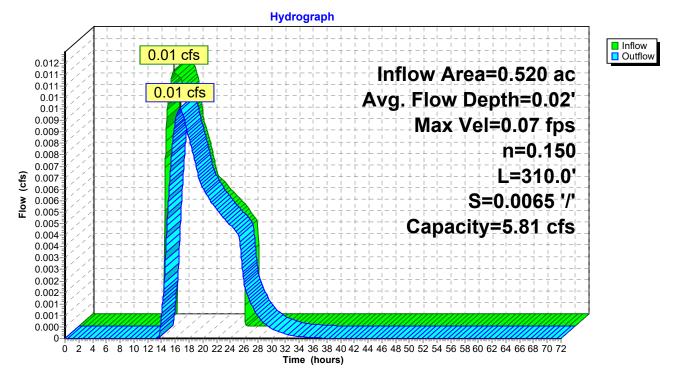
Subcatchment P-4:

Summary for Reach 1R: SWALE

 Inflow Area =
 0.520 ac,
 1.92% Impervious, Inflow Depth =
 0.16"
 for 10-Year event

 Inflow =
 0.01 cfs @
 13.74 hrs, Volume=
 0.007 af

 Outflow =
 0.01 cfs @
 16.67 hrs, Volume=
 0.007 af, Atten= 10%, Lag= 175.5 min

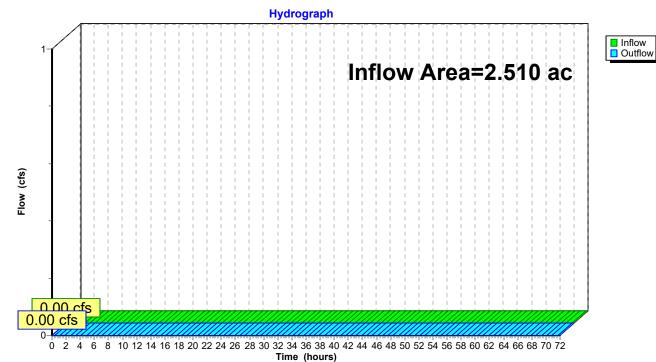

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 0.07 fps, Min. Travel Time= 76.2 min Avg. Velocity = 0.05 fps, Avg. Travel Time= 114.0 min

Peak Storage= 46 cf @ 15.40 hrs Average Depth at Peak Storage= 0.02' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 5.81 cfs

6.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 310.0' Slope= 0.0065 '/' Inlet Invert= 124.00', Outlet Invert= 122.00'

‡

Reach 1R: SWALE



Summary for Reach DP-1: DESIGN POINT 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.510 ac, 1	5.14% Impervious, Inflow	Depth = 0.00"	for 10-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1

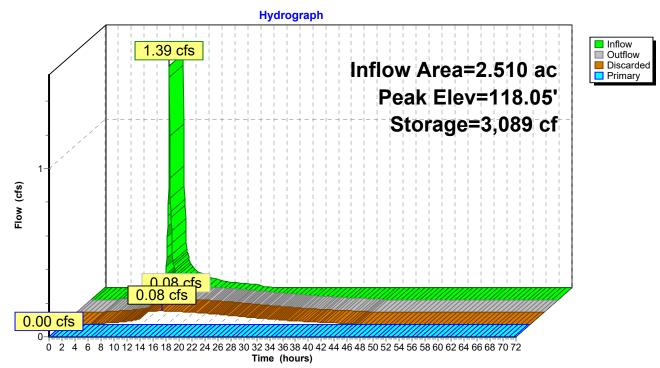
Summary for Pond 1P: Rain Garden

Used more restrictive B layer

[81] Warning: Exceeded Pond 4P by 2.99' @ 15.65 hrs

Inflow Area =	2.510 ac, 15.14% Impervious, Inflow D	epth = 0.62" for 10-Year event
Inflow =	1.39 cfs @ 12.07 hrs, Volume=	0.129 af
Outflow =	0.08 cfs @ 15.29 hrs, Volume=	0.129 af, Atten= 94%, Lag= 193.4 min
Discarded =	0.08 cfs @ 15.29 hrs, Volume=	0.129 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 118.05' @ 15.29 hrs Surf.Area= 1,453 sf Storage= 3,089 cf


Plug-Flow detention time= 512.6 min calculated for 0.129 af (100% of inflow) Center-of-Mass det. time= 512.8 min (1,319.0 - 806.2)

Volume	Invert	Avail.Sto	rage Sto	rage Description	
#1	113.00'	22,05	53 cf Cu	stom Stage Data (Prisi	matic)Listed below (Recalc)
Floveti			In a Ctay		
Elevatio		urf.Area	Inc.Stor		
(fee	et)	(sq-ft)	(cubic-fee	t) (cubic-feet)	
113.0	00	60		0 0	
114.(00	200	13	0 130	
115.0	00	404	30	2 432	
116.0	00	672	53	8 970	
117.0	00	1,007	84	0 1,810	
118.0	00	1,415	1,21	1 3,021	
119.0	00	2,202	1,80		
120.0		3,427	2,81		
121.0	00	4,655	4,04	,	
122.0		5,007	4,83	,	
123.0		6,068	5,53	,	
_		-,	- ,	- ,	
Device	Routing	Invert	Outlet De	vices	
#1	Primary	122.00'	30.0' lon	a x 3.0' breadth Broad	d-Crested Rectangular Weir
	,, ,				30 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50	
					2.67 2.65 2.64 2.64 2.68 2.68
				1 2.92 2.97 3.07 3.32	
#2	Discarded	113.00'	-	hr Exfiltration over Su	
#2	Discarueu	113.00	2.4 IV III/	III EXIIII auton over Su	IIIale alea

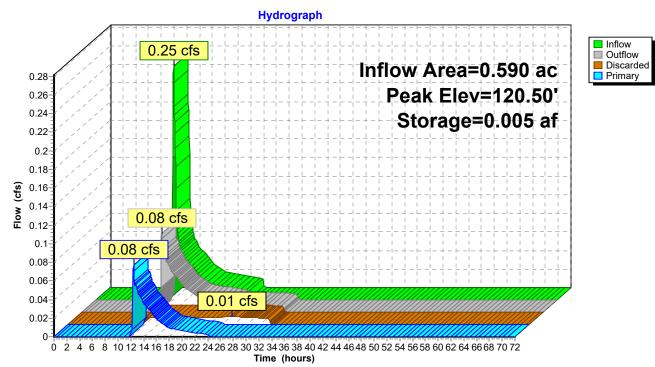
Discarded OutFlow Max=0.08 cfs @ 15.29 hrs HW=118.05' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.00' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Rain Garden

Summary for Pond 2P: Infiltration Trench

Inflow Area =	0.590 ac, 15.25% Impervious, Inflow De	epth = 0.63" for 10-Year event
Inflow =	0.25 cfs @ 12.12 hrs, Volume=	0.031 af
Outflow =	0.08 cfs @ 12.45 hrs, Volume=	0.029 af, Atten= 66%, Lag= 19.5 min
Discarded =	0.01 cfs @ 25.59 hrs, Volume=	0.013 af
Primary =	0.08 cfs @ 12.45 hrs, Volume=	0.017 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 120.50' @ 12.45 hrs Surf.Area= 0.003 ac Storage= 0.005 af

Plug-Flow detention time= 192.5 min calculated for 0.029 af (94% of inflow) Center-of-Mass det. time= 161.3 min (1,082.9 - 921.6)

Volume	Invert	Avail.Storage	Storage Description			
#1	119.00'	0.008 af				
#2	119.00'	0.001 af	L= 20.0' 18.0" Round Pipe Storage L= 18.0' S= 0.0500 '/'			
		0.009 af	Total Available Storage			
Device	Routing	Invert O	utlet Devices			
#1	Primary		2.0" x 120.0" Horiz. Orifice/Grate X 2.00 C= 0.600			
#0	Discondered		mited to weir flow at low heads			
#2	Discarded	119.00' 2.	410 in/hr Exfiltration over Surface area			
Discarded OutFlow Max=0.01 cfs @ 25.59 hrs HW=120.20' (Free Discharge)						

2=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.02 cfs @ 12.45 hrs HW=120.50' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.02 cfs @ 0.15 fps)

Pond 2P: Infiltration Trench

Summary for Pond 4P: Cultec Recharger 150

Inflow Area =	0.280 ac,100.00% Impervious, Inflow De	epth = 4.88" for 10-Year event
Inflow =	1.41 cfs @ 12.07 hrs, Volume=	0.114 af
Outflow =	1.40 cfs @ 12.07 hrs, Volume=	0.114 af, Atten= 1%, Lag= 0.1 min
Discarded =	0.01 cfs @ 12.07 hrs, Volume=	0.011 af
Primary =	1.39 cfs @ 12.07 hrs, Volume=	0.103 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 115.59' @ 12.07 hrs Surf.Area= 62 sf Storage= 73 cf

Plug-Flow detention time= 13.7 min calculated for 0.114 af (100% of inflow) Center-of-Mass det. time= 14.0 min (760.7 - 746.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	114.00'	51 cf	4.75'W x 13.00'L x 2.54'H Field A
			157 cf Overall - 29 cf Embedded = 128 cf x 40.0% Voids
#2A	114.50'	29 cf	Cultec R-150XLHD Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 1 rows
#3	114.00'	18 cf	12.0" Round Pipe Storage-Impervious
			L= 23.0' S= 0.0100 '/'
		98 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.50'	12.0" Round Culvert
			L= 69.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 114.50' / 113.00' S= 0.0217 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Discarded	114.00'	2.410 in/hr Exfiltration over Wetted area
#3	Device 1	115.00'	1.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

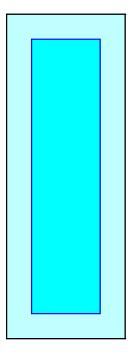
Discarded OutFlow Max=0.01 cfs @ 12.07 hrs HW=115.58' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

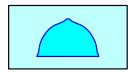
Primary OutFlow Max=1.34 cfs @ 12.07 hrs HW=115.58' (Free Discharge) 1=Culvert (Passes 1.34 cfs of 2.87 cfs potential flow) -3=Broad-Crested Rectangular Weir (Weir Controls 1.34 cfs @ 2.33 fps)

Pond 4P: Cultec Recharger 150 - Chamber Wizard Field A

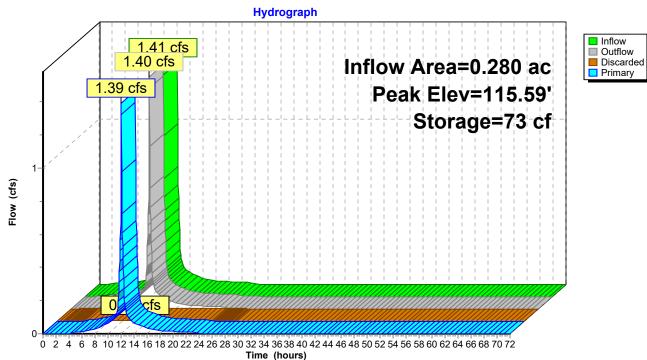
Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 1 rows


1 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 11.00' Row Length +12.0" End Stone x 2 = 13.00' Base Length 1 Rows x 33.0" Wide + 12.0" Side Stone x 2 = 4.75' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height


1 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 1 Rows = 29.1 cf Chamber Storage

156.9 cf Field - 29.1 cf Chambers = 127.8 cf Stone x 40.0% Voids = 51.1 cf Stone Storage


Chamber Storage + Stone Storage = 80.3 cf = 0.002 afOverall Storage Efficiency = 51.1%Overall System Size = $13.00' \times 4.75' \times 2.54'$

1 Chambers 5.8 cy Field 4.7 cy Stone

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

SubcatchmentP-1:	Runoff Area=0.280 ac 100.00% Impervious Runoff Depth=6.05" Tc=5.0 min CN=98 Runoff=1.74 cfs 0.141 af
SubcatchmentP-2:	Runoff Area=0.520 ac 1.92% Impervious Runoff Depth=0.42" Tc=5.0 min CN=37 Runoff=0.08 cfs 0.018 af
SubcatchmentP-3:	Runoff Area=0.590 ac 15.25% Impervious Runoff Depth=1.14" Tc=5.0 min CN=48 Runoff=0.61 cfs 0.056 af
SubcatchmentP-4:	Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=0.18" Tc=5.0 min CN=32 Runoff=0.03 cfs 0.017 af
Reach 1R: SWALE n=0.150 L	Avg. Flow Depth=0.05' Max Vel=0.11 fps Inflow=0.08 cfs 0.018 af =310.0' S=0.0065 '/' Capacity=5.81 cfs Outflow=0.03 cfs 0.018 af
Reach DP-1: DESIGN POINT 1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 1P: Rain Garden Discarded=0.13	Peak Elev=119.04' Storage=4,925 cf Inflow=2.13 cfs 0.207 af cfs 0.207 af Primary=0.00 cfs 0.000 af Outflow=0.13 cfs 0.207 af
Pond 2P: Infiltration Trench Discarded=0.01	Peak Elev=120.51' Storage=0.005 af Inflow=0.61 cfs 0.056 af cfs 0.013 af Primary=0.54 cfs 0.042 af Outflow=0.55 cfs 0.055 af
Pond 4P: Cultec Recharger 150 Discarded=0.01	Peak Elev=115.67' Storage=75 cf Inflow=1.74 cfs 0.141 af cfs 0.012 af Primary=1.72 cfs 0.130 af Outflow=1.73 cfs 0.141 af
Total Runoff Area = 2.510	ac Runoff Volume = 0.232 af Average Runoff Depth = 1.11" 84.86% Pervious = 2.130 ac 15.14% Impervious = 0.380 ac

Summary for Subcatchment P-1:

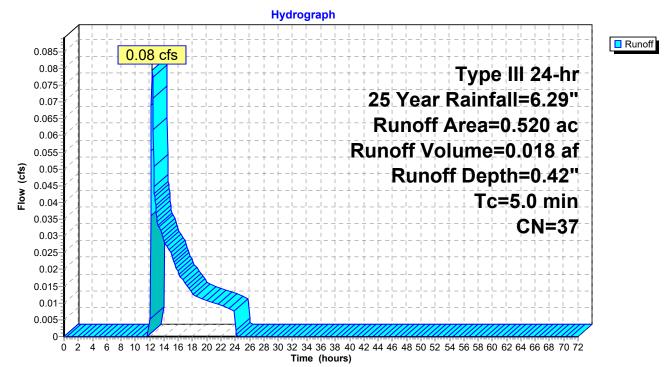
[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.74 cfs @ 12.07 hrs, Volume= 0.141 af, Depth= 6.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.29"

Area (ac)CNDescription0.14098Paved parking, HSG A0.14098Roofs, HSG A0.28098Weighted Average0.280100.00%Impervious ArTcLengthSlopeVelocityCapacit(ft/ft)(ft/sec)(cfs	y Description
5.0	Direct Entry, Min Tc
Sub	catchment P-1:
Hyd	rograph
	Image: Constraint of the second state of the second st

Summary for Subcatchment P-2:


[49] Hint: Tc<2dt may require smaller dt

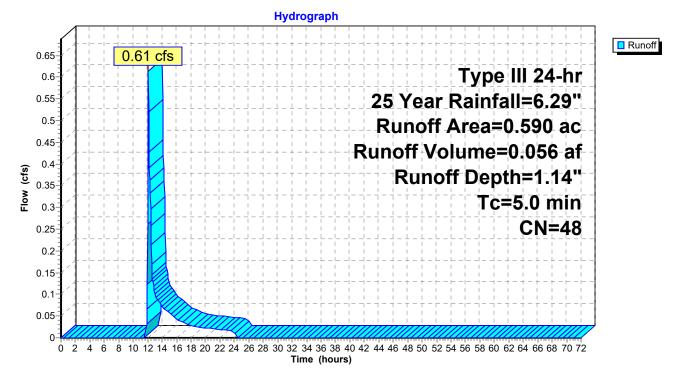
Runoff = 0.08 cfs @ 12.35 hrs, Volume= 0.018 af, Depth= 0.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.29"

Area	(ac)	CN	Desc	cription		
0.	340	39	>75%	% Grass co	over, Good	, HSG A
0.	010	98	Roof	s, HSG A		
0.	170	30	Woo	ds, Good,	HSG A	
0.	520	37	Weig	ghted Aver	age	
0.	510		98.0	8% Pervio	us Area	
0.	010		1.92	% Impervi	ous Area	
Та	Longt	h	Slana	Volocity	Conosity	Description
TC	Lengt		Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry, Min Tc

Subcatchment P-2:

Summary for Subcatchment P-3:


[49] Hint: Tc<2dt may require smaller dt

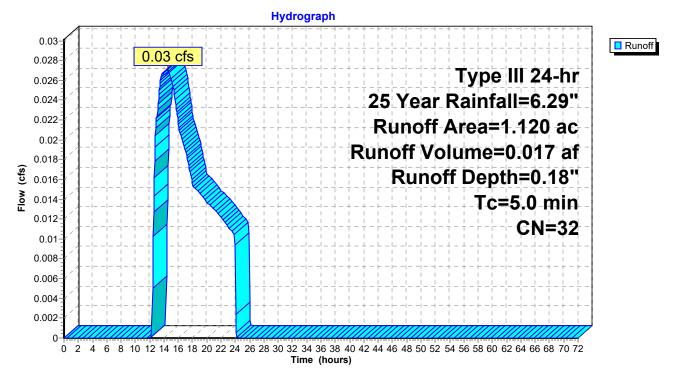
Runoff = 0.61 cfs @ 12.10 hrs, Volume= 0.056 af, Depth= 1.14"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.29"

Area	(ac)	CN	Desc	ription		
0.	.090	98	Pave	d parking,	HSG A	
0	.500	39	>75%	6 Grass co	over, Good,	HSG A
0.	.590	48	Weig	hted Aver	age	
0.	.500		84.7	5% Pervio	us Area	
0.	.090		15.2	5% Imperv	vious Area	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0						Direct Entry, Min Tc

Subcatchment P-3:

Summary for Subcatchment P-4:


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.03 cfs @ 14.53 hrs, Volume= 0.017 af, Depth= 0.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 25 Year Rainfall=6.29"

Area	(ac)	CN	Desc	cription		
0.	.300	39	>75%	6 Grass co	over, Good	, HSG A
0	.820	30	Woo	ds, Good,	HSG A	
1	.120	32	Weig	hted Aver	age	
1.	.120		100.	00% Pervi	ous Area	
Тс	Leng		Slope	Velocity	Capacity	Description
<u>(min)</u>	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry, Min Tc
						•

Subcatchment P-4:

Summary for Reach 1R: SWALE

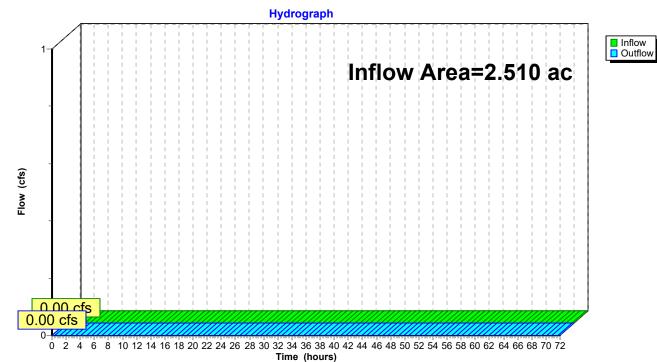
1.92% Impervious, Inflow Depth = 0.42"

for 25 Year event

Inflow Area =

0.520 ac.

Inflow 0.08 cfs @ 12.35 hrs, Volume= 0.018 af = Outflow 0.03 cfs @ 13.83 hrs, Volume= = 0.018 af, Atten= 57%, Lag= 88.8 min Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 0.11 fps, Min. Travel Time= 47.5 min Avg. Velocity = 0.06 fps, Avg. Travel Time= 92.1 min Peak Storage= 99 cf @ 13.04 hrs Average Depth at Peak Storage= 0.05' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 5.81 cfs 6.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 310.0' Slope= 0.0065 '/' Inlet Invert= 124.00', Outlet Invert= 122.00' ‡ Reach 1R: SWALE Hydrograph Inflow
Outflow 0.08 cfs 0.085 Inflow Area=0.520 ac 0.08 0.075 Avg. Flow Depth=0.05' 0.07 Max Vel=0.11 fps 0.065 0.06 n=0.150 0.055 L=310.0' ⁻low (cfs) 0.05 0.045 S=0.0065 '/' 0.04 0.03 cfs Capacity=5.81 cfs 0.035 0.03 0.025 0.02 0.015 0.01 0.005 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72


Time (hours)

Summary for Reach DP-1: DESIGN POINT 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.510 ac, 1	5.14% Impervious, Ir	nflow Depth = 0.00"	for 25 Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1

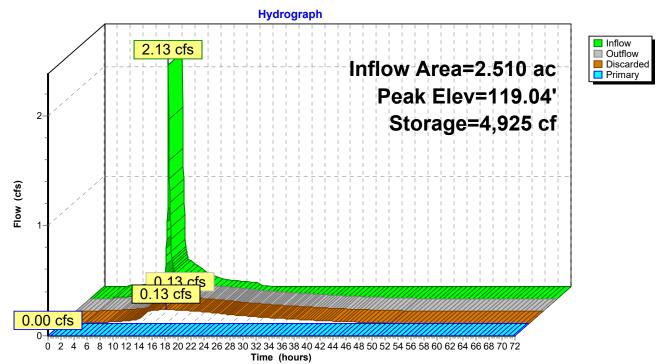
Summary for Pond 1P: Rain Garden

Used more restrictive B layer

[81] Warning: Exceeded Pond 4P by 3.98' @ 16.15 hrs

Inflow Area =	2.510 ac, 15.14% Impervious, Inflow De	epth = 0.99" for 25 Year event
Inflow =	2.13 cfs @ 12.10 hrs, Volume=	0.207 af
Outflow =	0.13 cfs @ 15.97 hrs, Volume=	0.207 af, Atten= 94%, Lag= 232.3 min
Discarded =	0.13 cfs @_ 15.97 hrs, Volume=	0.207 af
Primary =	0.00 cfs $\overline{@}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 119.04' @ 15.97 hrs Surf.Area= 2,255 sf Storage= 4,925 cf


Plug-Flow detention time= 564.7 min calculated for 0.207 af (100% of inflow) Center-of-Mass det. time= 565.2 min (1,393.2 - 828.0)

Volume	Invert	Avail.Sto	rage Sto	rage Description	
#1	113.00'	22,05	53 cf Cu	stom Stage Data (Prisi	matic)Listed below (Recalc)
Floveti			In a Ctay		
Elevatio		urf.Area	Inc.Stor		
(fee	et)	(sq-ft)	(cubic-fee	t) (cubic-feet)	
113.0	00	60		0 0	
114.(00	200	13	0 130	
115.0	00	404	30	2 432	
116.0	00	672	53	8 970	
117.0	00	1,007	84	0 1,810	
118.0	00	1,415	1,21	1 3,021	
119.0	00	2,202	1,80		
120.0		3,427	2,81		
121.0	00	4,655	4,04		
122.0		5,007	4,83		
123.0		6,068	5,53		
_		-,	- ,	- ,	
Device	Routing	Invert	Outlet De	vices	
#1	Primary	122.00'	30.0' lon	a x 3.0' breadth Broad	d-Crested Rectangular Weir
	,, ,				30 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50	
					2.67 2.65 2.64 2.64 2.68 2.68
				1 2.92 2.97 3.07 3.32	
#2	Discarded	113.00'			
#2	Discarueu	113.00	2.4 IV III/	III EXIIII alion over Su	IIIale alea

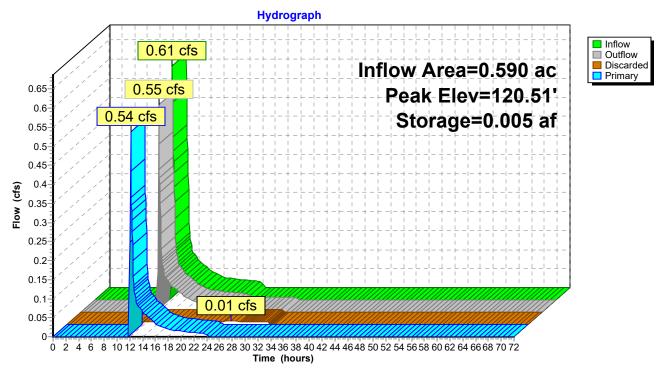
Discarded OutFlow Max=0.13 cfs @ 15.97 hrs HW=119.04' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.13 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.00' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Rain Garden

Summary for Pond 2P: Infiltration Trench

Inflow Area =	0.590 ac, 15.25% Impervious, Inflow De	epth = 1.14" for 25 Year event
Inflow =	0.61 cfs @ 12.10 hrs, Volume=	0.056 af
Outflow =	0.55 cfs @ 12.12 hrs, Volume=	0.055 af, Atten= 11%, Lag= 1.1 min
Discarded =	0.01 cfs @ 25.60 hrs, Volume=	0.013 af
Primary =	0.54 cfs $\overline{@}$ 12.12 hrs, Volume=	0.042 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 120.51' @ 12.10 hrs Surf.Area= 0.003 ac Storage= 0.005 af

Plug-Flow detention time= 89.5 min calculated for 0.055 af (98% of inflow) Center-of-Mass det. time= 82.1 min (978.9 - 896.8)

Volume	Invert	Avail.Storage	e Storage Description		
#1	119.00'	0.008 a	f 36.0" W x 36.0" H Box Pipe Storage/Trenches x 2		
#2	119.00'	0.001 a	L= 20.0' f 18.0" Round Pipe Storage L= 18.0' S= 0.0500 '/'		
		0.009 a			
Device	Routing	Invert C	Dutlet Devices		
#1	Primary	120.50' 7	72.0" x 120.0" Horiz. Orifice/Grate X 2.00 C= 0.600		
		_	Limited to weir flow at low heads		
#2	Discarded	119.00' 2	2.410 in/hr Exfiltration over Surface area		
Discarded OutFlow Max=0.01 cfs @ 25.60 hrs HW=120.20' (Free Discharge)					

2=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.31 cfs @ 12.12 hrs HW=120.51' (Free Discharge) **1=Orifice/Grate** (Weir Controls 0.31 cfs @ 0.37 fps)

Pond 2P: Infiltration Trench

Summary for Pond 4P: Cultec Recharger 150

Inflow Area =	0.280 ac,100.00% Impervious, Inflow De	epth = 6.05" for 25 Year event
Inflow =	1.74 cfs @ 12.07 hrs, Volume=	0.141 af
Outflow =	1.73 cfs @ 12.07 hrs, Volume=	0.141 af, Atten= 1%, Lag= 0.0 min
Discarded =	0.01 cfs @ 12.07 hrs, Volume=	0.012 af
Primary =	1.72 cfs @ 12.07 hrs, Volume=	0.130 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 115.67' @ 12.07 hrs Surf.Area= 62 sf Storage= 75 cf

Plug-Flow detention time= 11.3 min calculated for 0.141 af (100% of inflow) Center-of-Mass det. time= 11.7 min (755.2 - 743.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	114.00'	51 cf	4.75'W x 13.00'L x 2.54'H Field A
			157 cf Overall - 29 cf Embedded = 128 cf x 40.0% Voids
#2A	114.50'	29 cf	Cultec R-150XLHD Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 1 rows
#3	114.00'	18 cf	12.0" Round Pipe Storage-Impervious
			L= 23.0' S= 0.0100 '/'
		98 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.50'	12.0" Round Culvert
			L= 69.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 114.50' / 113.00' S= 0.0217 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Discarded	114.00'	2.410 in/hr Exfiltration over Wetted area
#3	Device 1	115.00'	1.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

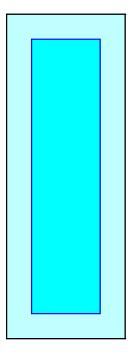
Discarded OutFlow Max=0.01 cfs @ 12.07 hrs HW=115.65' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

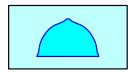
Primary OutFlow Max=1.66 cfs @ 12.07 hrs HW=115.65' (Free Discharge) 1=Culvert (Passes 1.66 cfs of 3.06 cfs potential flow) 3=Broad-Crested Rectangular Weir (Weir Controls 1.66 cfs @ 2.54 fps)

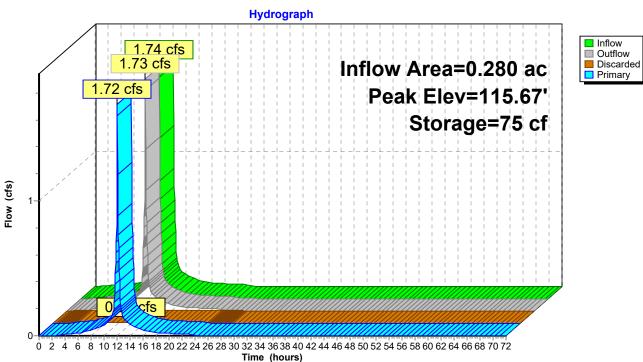
Pond 4P: Cultec Recharger 150 - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 1 rows


1 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 11.00' Row Length +12.0" End Stone x 2 = 13.00' Base Length 1 Rows x 33.0" Wide + 12.0" Side Stone x 2 = 4.75' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height


1 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 1 Rows = 29.1 cf Chamber Storage


156.9 cf Field - 29.1 cf Chambers = 127.8 cf Stone x 40.0% Voids = 51.1 cf Stone Storage

Chamber Storage + Stone Storage = 80.3 cf = 0.002 afOverall Storage Efficiency = 51.1%Overall System Size = $13.00' \times 4.75' \times 2.54'$

1 Chambers 5.8 cy Field 4.7 cy Stone

Pond 4P: Cultec Recharger 150

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P-1:	Runoff Area=0.280 ac 100.00% Impervious Runoff Depth=6.91" Tc=5.0 min CN=98 Runoff=1.98 cfs 0.161 af
Subcatchment P-2:	Runoff Area=0.520 ac 1.92% Impervious Runoff Depth=0.68" Tc=5.0 min CN=37 Runoff=0.16 cfs 0.029 af
Subcatchment P-3:	Runoff Area=0.590 ac 15.25% Impervious Runoff Depth=1.57" Tc=5.0 min CN=48 Runoff=0.93 cfs 0.077 af
Subcatchment P-4:	Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=0.35" Tc=5.0 min CN=32 Runoff=0.10 cfs 0.033 af
Reach 1R: SWALE n=0.150	Avg. Flow Depth=0.09' Max Vel=0.15 fps Inflow=0.16 cfs 0.029 af L=310.0' S=0.0065 '/' Capacity=5.81 cfs Outflow=0.09 cfs 0.029 af
Reach DP-1: DESIGN POINT 1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 1P: Rain Garden Discarded=0.1	Peak Elev=119.75' Storage=6,837 cf Inflow=3.37 cfs 0.283 af 7 cfs 0.283 af Primary=0.00 cfs 0.000 af Outflow=0.17 cfs 0.283 af
Pond 2P: Infiltration Trench Discarded=0.0	Peak Elev=120.53' Storage=0.005 af Inflow=0.93 cfs 0.077 af 11 cfs 0.013 af Primary=1.42 cfs 0.071 af Outflow=1.43 cfs 0.084 af
Pond 4P: Cultec Recharger 150 Discarded=0.0	Peak Elev=115.72' Storage=77 cf Inflow=1.98 cfs 0.161 af 11 cfs 0.012 af Primary=1.96 cfs 0.150 af Outflow=1.96 cfs 0.161 af
Total Runoff Area = 2.51	0 ac Runoff Volume = 0.300 af Average Runoff Depth = 1.44" 84.86% Pervious = 2.130 ac 15.14% Impervious = 0.380 ac

Summary for Subcatchment P-1:

[49] Hint: Tc<2dt may require smaller dt

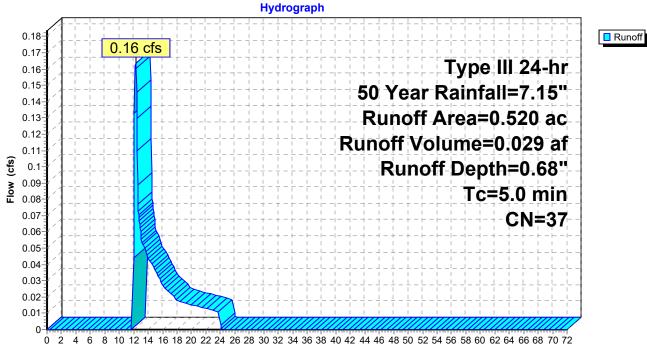
Runoff = 1.98 cfs @ 12.07 hrs, Volume= 0.161 af, Depth= 6.91"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.15"

Area (ac) CN Description	
0.140 98 Paved parking, HSG A	
0.140 98 Roofs, HSG A	
0.280 98 Weighted Average 0.280 100.00% Impervious Area	
	1
Tc Length Slope Velocity Capacity	Description
(min) (feet) (ft/ft) (ft/sec) (cfs)	Discot Frating Min To
5.0	Direct Entry, Min Tc
Subca	atchment P-1:
Hydrog	graph
1.98 cfs	
	Type III 24-hr
	50 Year Rainfall=7.15"
	Runoff Area=0.280 ac
â	Runoff Volume=0.161 af
City 1	Runoff Depth=6.91"
	Tc=5.0 min
	CN=98

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Subcatchment P-2:


[49] Hint: Tc<2dt may require smaller dt

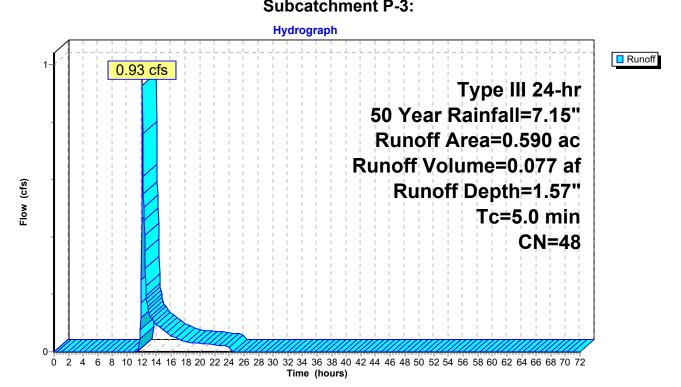
Runoff = 0.16 cfs @ 12.27 hrs, Volume= 0.029 af, Depth= 0.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.15"

Area (a	ac) C	CN D	esc	cription		
0.3	340	39 >	75%	% Grass co	over, Good	, HSG A
0.0)10	98 R	oof	s, HSG A		
0.1	70	30 V	/00	ds, Good,	HSG A	
0.5	520	37 W	/eio	ghted Aver	age	
0.5	510	9	8.0	8% Pervio	us Area	
0.0	010	1	.92	% Impervi	ous Area	
Tc (min)	Length (feet)	Slor (ft/		Velocity (ft/sec)	Capacity (cfs)	Description
5.0	(1904)	(14	/	(1-000)	(0.0)	Direct Entry, Min Tc

Subcatchment P-2:

Time (hours)


Summary for Subcatchment P-3:

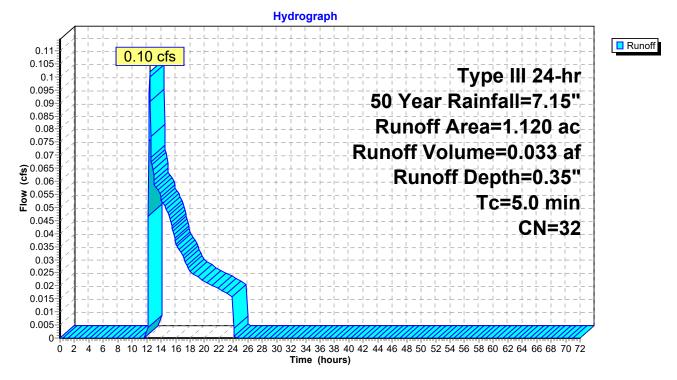
[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.93 cfs @ 12.10 hrs, Volume= 0.077 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.15"

Area	(ac)	CN	Desc	Description					
0.	090	98	Pave	Paved parking, HSG A					
0.	500	39	>75%	% Grass co	over, Good	, HSG A			
0.	590	48	Weig	phted Aver	age				
-	500		84.7	5% Pervio	us Area				
0.	090		15.2	5% Imperv	/ious Area				
Tc (min)	Lengt (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
5.0						Direct Entry, Min Tc			
	Subcatchment P 3:								

Summary for Subcatchment P-4:


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.10 cfs @ 12.42 hrs, Volume= 0.033 af, Depth= 0.35"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 50 Year Rainfall=7.15"

Area	(ac)	CN	Desc	cription		
0	.300	39	>75%	% Grass co	over, Good	, HSG A
0	.820	30	Woo	ds, Good,	HSG A	
1	.120	32	Weig	phted Aver	age	
1	.120		100.	00% Pervi	ous Area	
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.0						Direct Entry, Min Tc

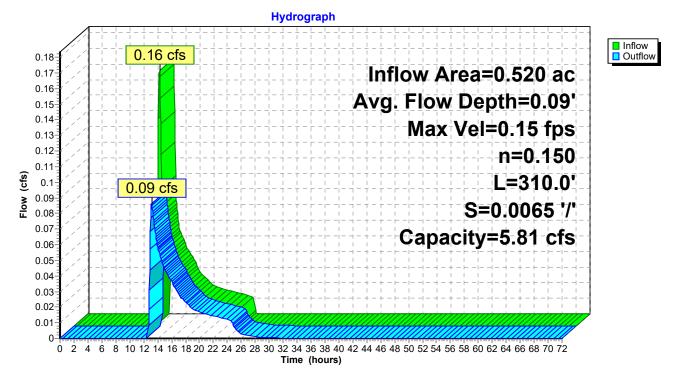
Subcatchment P-4:

Summary for Reach 1R: SWALE

 Inflow Area =
 0.520 ac,
 1.92% Impervious, Inflow Depth =
 0.68" for 50 Year event

 Inflow =
 0.16 cfs @
 12.27 hrs, Volume=
 0.029 af

 Outflow =
 0.09 cfs @
 13.12 hrs, Volume=
 0.029 af, Atten= 47%, Lag= 51.2 min

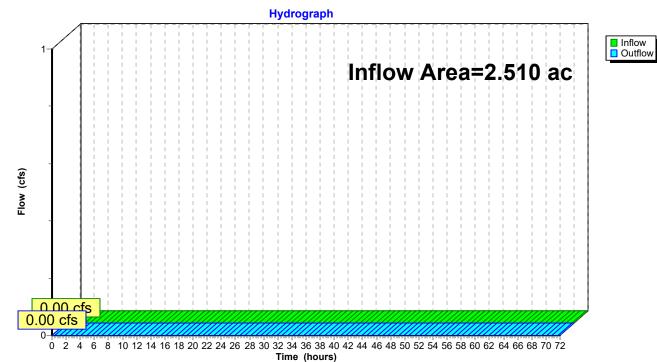

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 0.15 fps, Min. Travel Time= 33.5 min Avg. Velocity = 0.06 fps, Avg. Travel Time= 82.6 min

Peak Storage= 174 cf @ 12.57 hrs Average Depth at Peak Storage= 0.09' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 5.81 cfs

6.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 310.0' Slope= 0.0065 '/' Inlet Invert= 124.00', Outlet Invert= 122.00'

‡

Reach 1R: SWALE



Summary for Reach DP-1: DESIGN POINT 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.510 ac, 1	5.14% Impervious, Inflo	by Depth = $0.00"$	for 50 Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1

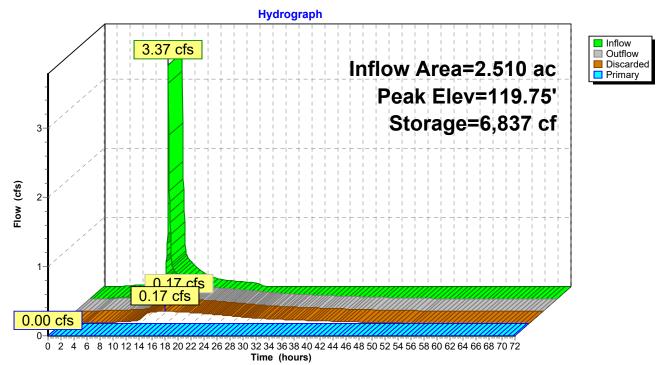
Summary for Pond 1P: Rain Garden

Used more restrictive B layer

[81] Warning: Exceeded Pond 4P by 4.69' @ 16.10 hrs

Inflow Area =	2.510 ac, 15.14% Impervious, Inflow De	epth = 1.35" for 50 Year event
Inflow =	3.37 cfs @ 12.07 hrs, Volume=	0.283 af
Outflow =	0.17 cfs @ 15.92 hrs, Volume=	0.283 af, Atten= 95%, Lag= 230.7 min
Discarded =	0.17 cfs @_ 15.92 hrs, Volume=	0.283 af
Primary =	0.00 cfs $\overline{\textcircled{0}}$ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 119.75' @ 15.92 hrs Surf.Area= 3,126 sf Storage= 6,837 cf


Plug-Flow detention time= 586.8 min calculated for 0.283 af (100% of inflow) Center-of-Mass det. time= 587.2 min (1,418.8 - 831.6)

Volume	Invert	Avail.Sto	rage Sto	rage Description	
#1	113.00'	22,05	53 cf Cu	stom Stage Data (Prisi	matic)Listed below (Recalc)
Floveti			In a Ctay		
Elevatio		urf.Area	Inc.Stor		
(fee	et)	(sq-ft)	(cubic-fee	t) (cubic-feet)	
113.0	00	60		0 0	
114.(00	200	13	0 130	
115.0	00	404	30	2 432	
116.0	00	672	53	8 970	
117.0	00	1,007	84	0 1,810	
118.0	00	1,415	1,21	1 3,021	
119.0	00	2,202	1,80		
120.0		3,427	2,81		
121.0	00	4,655	4,04	,	
122.0		5,007	4,83	,	
123.0		6,068	5,53	,	
		-,	- ,	- ,	
Device	Routing	Invert	Outlet De	vices	
#1	Primary	122.00'	30.0' lon	a x 3.0' breadth Broad	d-Crested Rectangular Weir
	,, ,				30 1.00 1.20 1.40 1.60 1.80 2.00
				3.50 4.00 4.50	
					2.67 2.65 2.64 2.64 2.68 2.68
				1 2.92 2.97 3.07 3.32	
#2	Discarded	113.00'	-	hr Exfiltration over Su	
#2	Discarueu	113.00	2.4 IV III/	III EXIIII auton over Su	IIIale alea

Discarded OutFlow Max=0.17 cfs @ 15.92 hrs HW=119.75' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.17 cfs)

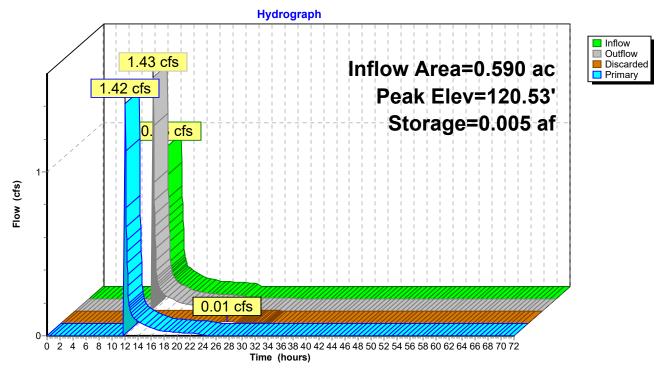
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.00' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Rain Garden

Summary for Pond 2P: Infiltration Trench

[88] Warning: Qout>Qin may require smaller dt or Finer Routing

Inflow Area =	0.590 ac, 15.25% Impervious, Inflow De	epth = 1.57" for 50 Year event
Inflow =	0.93 cfs @ 12.10 hrs, Volume=	0.077 af
Outflow =	1.43 cfs @ 12.07 hrs, Volume=	0.084 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.01 cfs @ 25.61 hrs, Volume=	0.013 af
Primary =	1.42 cfs @12.07 hrs, Volume=	0.071 af


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 120.53' @ 12.05 hrs Surf.Area= 0.003 ac Storage= 0.005 af

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 39.9 min (924.6 - 884.7)

Volume	Invert	Avail.Storage	e Storage Description			
#1	119.00'	0.008 a	af 36.0" W x 36.0" H Box Pipe Storage/Trenches x 2 L= 20.0'			
#2	119.00'	0.001 a	af 18.0" Round Pipe Storage L= 18.0' S= 0.0500 '/'			
0.009 af Total Available Storage						
Device	Routing	Invert (Outlet Devices			
#1	Primary		72.0" x 120.0" Horiz. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads			
#2 Discarded 119.00' 2.410 in/hr Exfiltration over Surface area						
Discarded OutFlow Max=0.01 cfs @ 25.61 hrs HW=120.20' (Free Discharge) 2=Exfiltration (Exfiltration Controls 0.01 cfs)						

Primary OutFlow Max=1.23 cfs @ 12.07 hrs HW=120.53' (Free Discharge) **1=Orifice/Grate** (Weir Controls 1.23 cfs @ 0.59 fps)

Pond 2P: Infiltration Trench

Summary for Pond 4P: Cultec Recharger 150

Inflow Area =	0.280 ac,100.00% Impervious, Inflow De	epth = 6.91" for 50 Year event
Inflow =	1.98 cfs @ 12.07 hrs, Volume=	0.161 af
Outflow =	1.96 cfs @12.07 hrs, Volume=	0.161 af, Atten= 1%, Lag= 0.0 min
Discarded =	0.01 cfs @ 12.07 hrs, Volume=	0.012 af
Primary =	1.96 cfs @ 12.07 hrs, Volume=	0.150 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 115.72' @ 12.07 hrs Surf.Area= 62 sf Storage= 77 cf

Plug-Flow detention time= 10.2 min calculated for 0.161 af (100% of inflow) Center-of-Mass det. time= 10.5 min (752.2 - 741.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	114.00'	51 cf	4.75'W x 13.00'L x 2.54'H Field A
			157 cf Overall - 29 cf Embedded = 128 cf x 40.0% Voids
#2A	114.50'	29 cf	Cultec R-150XLHD Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 1 rows
#3	114.00'	18 cf	12.0" Round Pipe Storage-Impervious
			L= 23.0' S= 0.0100 '/'
		98 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.50'	12.0" Round Culvert
			L= 69.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 114.50' / 113.00' S= 0.0217 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Discarded	114.00'	2.410 in/hr Exfiltration over Wetted area
#3	Device 1	115.00'	1.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

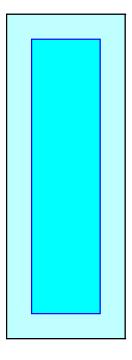
Discarded OutFlow Max=0.01 cfs @ 12.07 hrs HW=115.70' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

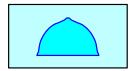
Primary OutFlow Max=1.89 cfs @ 12.07 hrs HW=115.70' (Free Discharge) 1=Culvert (Passes 1.89 cfs of 3.17 cfs potential flow) 3=Broad-Crested Rectangular Weir (Weir Controls 1.89 cfs @ 2.68 fps)

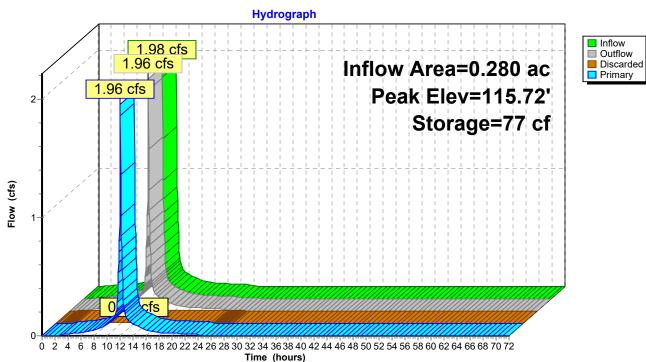
Pond 4P: Cultec Recharger 150 - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 1 rows


1 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 11.00' Row Length +12.0" End Stone x 2 = 13.00' Base Length 1 Rows x 33.0" Wide + 12.0" Side Stone x 2 = 4.75' Base Width 6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height


1 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 1 Rows = 29.1 cf Chamber Storage

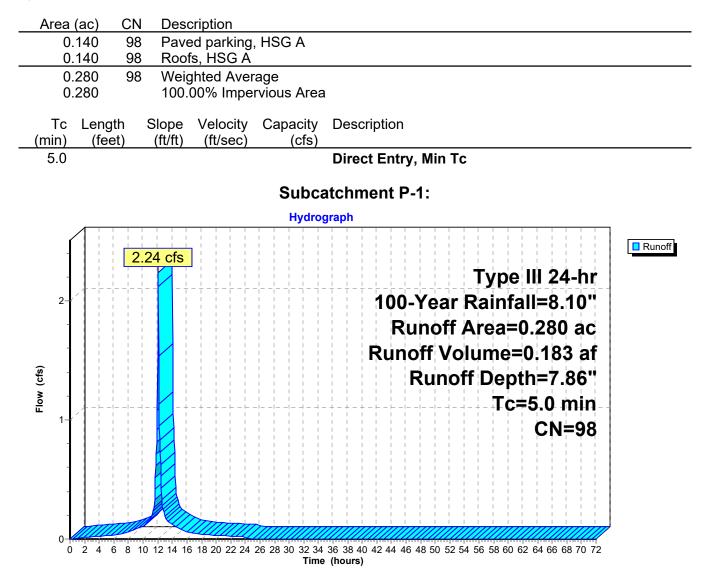

156.9 cf Field - 29.1 cf Chambers = 127.8 cf Stone x 40.0% Voids = 51.1 cf Stone Storage

Chamber Storage + Stone Storage = 80.3 cf = 0.002 af Overall Storage Efficiency = 51.1% Overall System Size = 13.00' x 4.75' x 2.54'

1 Chambers 5.8 cy Field 4.7 cy Stone

Pond 4P: Cultec Recharger 150

Time span=0.00-72.00 hrs, dt=0.05 hrs, 1441 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method


SubcatchmentP-1:	Runoff Area=0.280 ac 100.00% Impervious Runoff Depth=7.86" Tc=5.0 min CN=98 Runoff=2.24 cfs 0.183 af
SubcatchmentP-2:	Runoff Area=0.520 ac 1.92% Impervious Runoff Depth=1.01" Tc=5.0 min CN=37 Runoff=0.36 cfs 0.044 af
SubcatchmentP-3:	Runoff Area=0.590 ac 15.25% Impervious Runoff Depth=2.10" Tc=5.0 min CN=48 Runoff=1.31 cfs 0.103 af
SubcatchmentP-4:	Runoff Area=1.120 ac 0.00% Impervious Runoff Depth=0.59" Tc=5.0 min CN=32 Runoff=0.26 cfs 0.055 af
	Avg. Flow Depth=0.14' Max Vel=0.20 fps Inflow=0.36 cfs 0.044 af =310.0' S=0.0065 '/' Capacity=5.81 cfs Outflow=0.18 cfs 0.044 af
Reach DP-1: DESIGN POINT 1	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond 1P: Rain Garden Discarded=0.21	Peak Elev=120.31' Storage=8,762 cf Inflow=3.44 cfs 0.359 af cfs 0.359 af Primary=0.00 cfs 0.000 af Outflow=0.21 cfs 0.359 af
Pond 2P: Infiltration Trench Discarded=0.01	Peak Elev=120.53' Storage=0.005 af Inflow=1.31 cfs 0.103 af cfs 0.013 af Primary=1.22 cfs 0.088 af Outflow=1.22 cfs 0.101 af
Pond 4P: Cultec Recharger 150 Discarded=0.01	Peak Elev=115.77' Storage=79 cf Inflow=2.24 cfs 0.183 af cfs 0.012 af Primary=2.22 cfs 0.172 af Outflow=2.23 cfs 0.183 af
Total Runoff Area = 2.510	ac Runoff Volume = 0.386 af Average Runoff Depth = 1.84" 84.86% Pervious = 2.130 ac 15.14% Impervious = 0.380 ac

Summary for Subcatchment P-1:

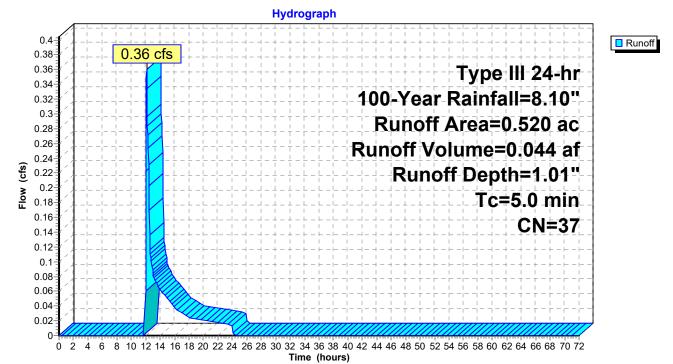
[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.24 cfs @ 12.07 hrs, Volume= 0.183 af, Depth= 7.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.10"

Summary for Subcatchment P-2:

[49] Hint: Tc<2dt may require smaller dt


0.36 cfs @ 12.12 hrs, Volume= 0.044 af, Depth= 1.01" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.10"

Area (ac)	CN	Desc	Description				
0.3	340	39	>75%	6 Grass co	over, Good	, HSG A		
0.0	010	98	Roof	s, HSG A				
0.2	170	30	Woo	ds, Good,	HSG A			
0.5	520	37	Weig	hted Aver	age			
0.5	510		98.0	8% Pervio	us Area			
0.0	010		1.92	% Impervi	ous Area			
Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0						Direct Entry, Min Tc		

Subcatchment P-2:

Summary for Subcatchment P-3:

[49] Hint: Tc<2dt may require smaller dt

Flow (cfs)

Runoff = 1.31 cfs @ 12.09 hrs, Volume= 0.103 af, Depth= 2.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.10"

	CN	Desc	ription				
0.090	98	Pave	d parking,	HSG A			
0.500	39	>75%	6 Grass co	over, Good,	HSG A		
0.590	48	Weig	hted Aver	age			
0.500		84.75	5% Pervio	us Area			
0.090		15.25	5% Imperv	vious Area			
Tc Leng (min) (fe		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
						-	
5.0					Direct Entry, Min		
5.0					•	1 IC	
5.0				Subca	Direct Entry, Min atchment P-3:	1 IC	
5.0				Subca Hydrog	atchment P-3:	1 IC	

100-Year Rainfall=8.10" Runoff Area=0.590 ac

Runoff Volume=0.103 af

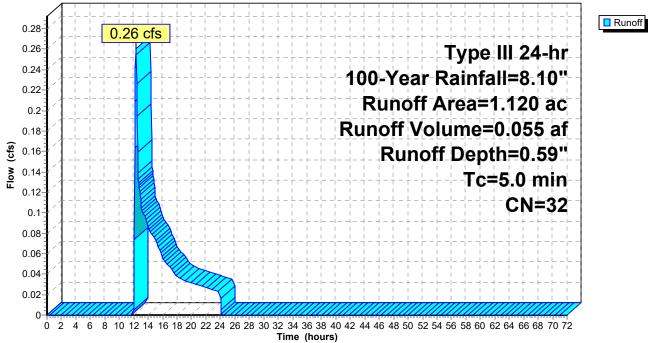
Runoff Depth=2.10"

Tc=5.0 min

CN=48

Summary for Subcatchment P-4:

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.26 cfs @ 12.33 hrs, Volume= 0.055 af, Depth= 0.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=8.10"

Area	(ac)	CN	Desc	cription		
0.	300	39	>75	% Grass co	over, Good	, HSG A
0.	.820	30	Woo	ds, Good,	HSG A	
1.	120	32	Weig	ghted Aver	age	
1.	120		100.	00% Pervi	ous Area	
_					- ··	
Tc	Leng		Slope	Velocity	Capacity	Description
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
5.0						Direct Entry, Min Tc
						**

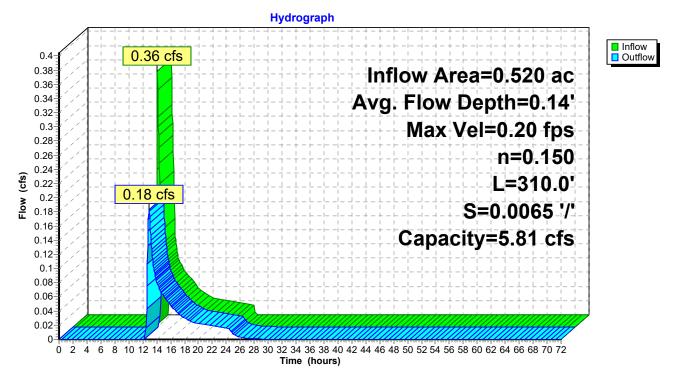
Subcatchment P-4:

Summary for Reach 1R: SWALE

 Inflow Area =
 0.520 ac, 1.92% Impervious, Inflow Depth = 1.01" for 100-Year event

 Inflow =
 0.36 cfs @
 12.12 hrs, Volume=
 0.044 af

 Outflow =
 0.18 cfs @
 12.90 hrs, Volume=
 0.044 af, Atten= 49%, Lag= 47.0 min

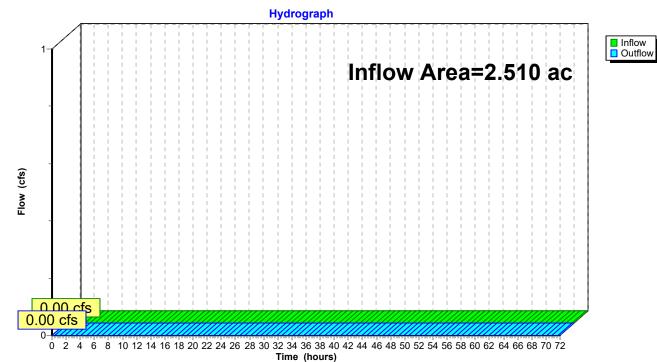

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Max. Velocity= 0.20 fps, Min. Travel Time= 25.3 min Avg. Velocity = 0.07 fps, Avg. Travel Time= 75.2 min

Peak Storage= 278 cf @ 12.48 hrs Average Depth at Peak Storage= 0.14' Bank-Full Depth= 1.00' Flow Area= 9.0 sf, Capacity= 5.81 cfs

6.00' x 1.00' deep channel, n= 0.150 Sheet flow over Short Grass Side Slope Z-value= 3.0 '/' Top Width= 12.00' Length= 310.0' Slope= 0.0065 '/' Inlet Invert= 124.00', Outlet Invert= 122.00'

‡

Reach 1R: SWALE



Summary for Reach DP-1: DESIGN POINT 1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.510 ac, 1	5.14% Impervious, Ir	nflow Depth = 0.00"	for 100-Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs

Reach DP-1: DESIGN POINT 1

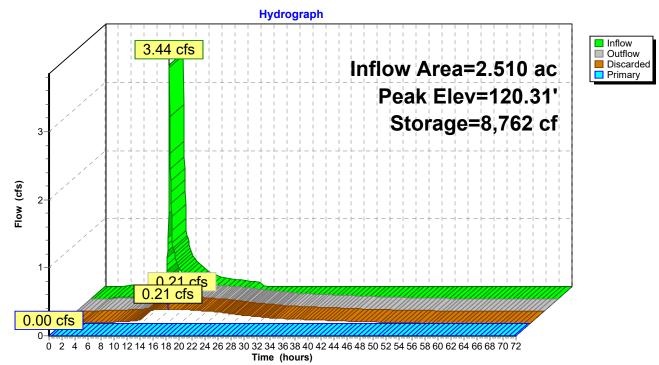
Summary for Pond 1P: Rain Garden

Used more restrictive B layer

[81] Warning: Exceeded Pond 4P by 5.24' @ 16.40 hrs

Inflow Area =	2.510 ac, 15.14% Impervious, Inflow De	epth = 1.71" for 100-Year event
Inflow =	3.44 cfs @ 12.08 hrs, Volume=	0.359 af
Outflow =	0.21 cfs @ 16.13 hrs, Volume=	0.359 af, Atten= 94%, Lag= 243.0 min
Discarded =	0.21 cfs @16.13 hrs, Volume=	0.359 af
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs Peak Elev= 120.31' @ 16.13 hrs Surf.Area= 3,807 sf Storage= 8,762 cf


Plug-Flow detention time= 610.8 min calculated for 0.358 af (100% of inflow) Center-of-Mass det. time= 611.5 min (1,449.4 - 837.9)

Volume	Invert	Avail.Sto	rage S	torage	Description	
#1	113.00'	22,05	53 cf C	ustom	Stage Data (P	rismatic)Listed below (Recalc)
F laveti				4	Ourse Otherse	
Elevatio		urf.Area	Inc.S		Cum.Store	
(fee	-	(sq-ft)	(cubic-f		(cubic-feet)	
113.0	00	60		0	0	
114.(00	200		130	130	
115.0	00	404		302	432	
116.0	00	672		538	970	
117.0	00	1,007		840	1,810	
118.0	00	1,415	1,	211	3,021	
119.0	00	2,202		809	4,829	
120.0	00	3,427		815	7,644	
121.0	00	4,655	4,	041	11,685	
122.0	00	5,007	4,	831	16,516	
123.0	00	6,068	,	538	22,053	
Device	Routing	Invert	Outlet	Devices	3	
#1	Primary	122.00'	30.0' lo	ona x:	3.0' breadth Br	oad-Crested Rectangular Weir
	,, ,					0.80 1.00 1.20 1.40 1.60 1.80 2.00
					50 4.00 4.50	0.00 1.00 1.20 1.10 1.00 1.00 2.00
						60 267 265 264 264 260 260
						.68 2.67 2.65 2.64 2.64 2.68 2.68
	D :	440.001			2 2.97 3.07 3	
#2	Discarded	113.00'	2.410 i	n/hr Ex	diltration over	Surface area

Discarded OutFlow Max=0.21 cfs @ 16.13 hrs HW=120.31' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.21 cfs)

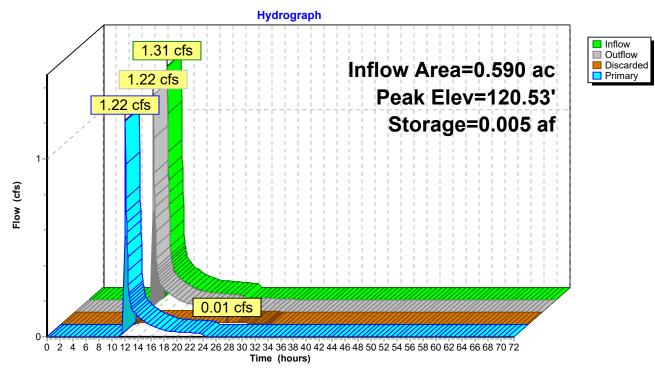
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=113.00' (Free Discharge) —1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 1P: Rain Garden

Summary for Pond 2P: Infiltration Trench

Inflow Area =	0.590 ac, 15.25% Impervious, Inflow De	epth = 2.10" for 100-Year event
Inflow =	1.31 cfs @ 12.09 hrs, Volume=	0.103 af
Outflow =	1.22 cfs @12.09 hrs, Volume=	0.101 af, Atten= 7%, Lag= 0.1 min
Discarded =	0.01 cfs @ 25.61 hrs, Volume=	0.013 af
Primary =	1.22 cfs $\overline{@}$ 12.09 hrs, Volume=	0.088 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 120.53' @ 12.09 hrs Surf.Area= 0.003 ac Storage= 0.005 af


Plug-Flow detention time= 61.1 min calculated for 0.101 af (97% of inflow) Center-of-Mass det. time= 48.0 min (922.7 - 874.7)

Volume	Invert	Avail.Storage	e Storage Description			
#1	119.00'	0.008 at	f 36.0" W x 36.0" H Box Pipe Storage/Trenchesx 2			
#2	119.00'	0.001 at	L= 20.0' f 18.0" Round Pipe Storage L= 18.0' S= 0.0500 '/'			
		0.009 at	f Total Available Storage			
Device	Routing	Invert C	Dutlet Devices			
#1	Primary	120.50' 7	2.0" x 120.0" Horiz. Orifice/Grate X 2.00 C= 0.600			
		L	imited to weir flow at low heads			
#2	Discarded	119.00' 2	.410 in/hr Exfiltration over Surface area			
Discard	Discarded OutFlow Max=0.01 cfs @ 25.61 hrs HW=120.20' (Free Discharge)					

2=Exfiltration (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=1.17 cfs @ 12.09 hrs HW=120.53' (Free Discharge) **1=Orifice/Grate** (Weir Controls 1.17 cfs @ 0.58 fps)

Pond 2P: Infiltration Trench

Summary for Pond 4P: Cultec Recharger 150

Inflow Area =	0.280 ac,100.00% Impervious, Inflow De	epth = 7.86" for 100-Year event
Inflow =	2.24 cfs @ 12.07 hrs, Volume=	0.183 af
Outflow =	2.23 cfs @ 12.07 hrs, Volume=	0.183 af, Atten= 1%, Lag= 0.0 min
Discarded =	0.01 cfs @ 12.07 hrs, Volume=	0.012 af
Primary =	2.22 cfs @ 12.07 hrs, Volume=	0.172 af

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 115.77' @ 12.07 hrs Surf.Area= 62 sf Storage= 79 cf

Plug-Flow detention time= 9.0 min calculated for 0.183 af (100% of inflow) Center-of-Mass det. time= 9.4 min (749.5 - 740.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	114.00'	51 cf	4.75'W x 13.00'L x 2.54'H Field A
			157 cf Overall - 29 cf Embedded = 128 cf x 40.0% Voids
#2A	114.50'	29 cf	Cultec R-150XLHD Inside #1
			Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf
			Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap
			Row Length Adjustment= +0.75' x 2.65 sf x 1 rows
#3	114.00'	18 cf	12.0" Round Pipe Storage-Impervious
			L= 23.0' S= 0.0100 '/'
		98 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	114.50'	12.0" Round Culvert
			L= 69.0' CPP, end-section conforming to fill, Ke= 0.500
			Inlet / Outlet Invert= 114.50' / 113.00' S= 0.0217 '/' Cc= 0.900
			n= 0.012, Flow Area= 0.79 sf
#2	Discarded	114.00'	2.410 in/hr Exfiltration over Wetted area
#3	Device 1	115.00'	1.0' long x 0.5' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00
			Coef. (English) 2.80 2.92 3.08 3.30 3.32

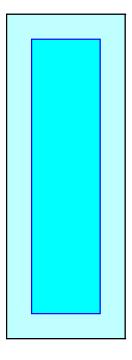
Discarded OutFlow Max=0.01 cfs @ 12.07 hrs HW=115.76' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 0.01 cfs)

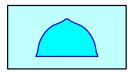
Primary OutFlow Max=2.14 cfs @ 12.07 hrs HW=115.76' (Free Discharge) 1=Culvert (Passes 2.14 cfs of 3.29 cfs potential flow) 3=Broad-Crested Rectangular Weir (Weir Controls 2.14 cfs @ 2.83 fps)

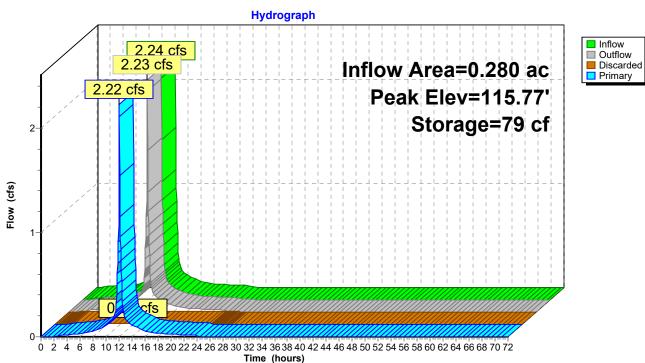
Pond 4P: Cultec Recharger 150 - Chamber Wizard Field A

Chamber Model = Cultec R-150XLHD (Cultec Recharger® 150XLHD)

Effective Size= 29.8"W x 18.0"H => 2.65 sf x 10.25'L = 27.2 cf Overall Size= 33.0"W x 18.5"H x 11.00'L with 0.75' Overlap Row Length Adjustment= +0.75' x 2.65 sf x 1 rows


1 Chambers/Row x 10.25' Long +0.75' Row Adjustment = 11.00' Row Length +12.0" End Stone x 2 = 13.00' Base Length
1 Rows x 33.0" Wide + 12.0" Side Stone x 2 = 4.75' Base Width
6.0" Base + 18.5" Chamber Height + 6.0" Cover = 2.54' Field Height


1 Chambers x 27.2 cf +0.75' Row Adjustment x 2.65 sf x 1 Rows = 29.1 cf Chamber Storage


156.9 cf Field - 29.1 cf Chambers = 127.8 cf Stone x 40.0% Voids = 51.1 cf Stone Storage

Chamber Storage + Stone Storage = 80.3 cf = 0.002 af Overall Storage Efficiency = 51.1% Overall System Size = 13.00' x 4.75' x 2.54'

1 Chambers 5.8 cy Field 4.7 cy Stone

Pond 4P: Cultec Recharger 150

APPENDIX E

Recharge Calculations

146 Georgetown Road Boxford, MA

MassDEP Standard No. 3 - Groundwater Recharge Calculations

Minimum Required Recharge Volume (if 100% of impervious area discharging to recharge BMP)					
NRCS Hydrologic	Approx. Soil Texture	Target Depth Factor	Impervious	Required Recharge	
Soil Type	Approx. Son Texture	(inches)	Area (acres)	(ac-ft)	(cf)
A	sand	0.60	0.00	0.000	0
В	loam	0.35	0.38	0.011	483
C	silty loam	0.25	0.00	0.000	0
D	clay	0.10	0.00	0.000	0
		Totals =	0.38	0.011	483

MassDEP Standard No. 3 - Groundwater Recharge Calculations

Recharge Rain Garden	Static Storage Volume (cf)
1	16,516
	16,516

Rv = F x impervious area x ratio of impervious area

 Where:
 Rv = required recharge volume (acre-feet)

 F = target depth factor associated with each hydrologic soil group (feet)

 Impervious Area = pavement and rooftop area on site (acres)

 Ratio of Impervious Area = total impervious area / impervious area discharging to recharge BMP

Notes:

- 1.) A minimum of 65% of impervious area is required to drain to recharge BMP.
- 2.) Refer to the 2008 Massachusetts Stormwater Handbook Volume 3, Chapter 1, pages 27-28 for required recharge requirement.

APPENDIX F

Water Quality Calculations

146 Georgetown Road Boxford, MA

MassDEP Standard No. 4 - Water Quality Volume Calculations

BMP Water Quality Volume Calculations Summary							
	Impervious Tributary		Required WQVr	Provided WQVp			
Description	Area	WQ Runoff Depth	Volume	Volume			
	(acres)	(inches)	(cubic feet)	(cubic feet)			
Rain Garden	0.38	1.0	1,379	16,516			

Recharge Rain Garden	Static Storage Volume (cf)		
1	16,516		
	16,516		

Water Quality Volume (WQVr) = WQ * A Where:

WQVr = water quality volume required

A = impervious surface drainage area

WQ = water quality run off depth

WQVp = water quality provided

APPENDIX G

TSS Removal Calculations

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location: 146 Georgetown Road, Boxford MA				
	В	С	D	Е	F
	BMP ¹	TSS Removal Rate ¹	Starting TSS Load*	Amount Removed (C*D)	Remaining Load (D-E)
val rksheet	Rain Garden	0.90	1.00	0.90	0.10
emoval Works	Water Quality Swale - Dry	0.70	0.10	0.07	0.03
	Subsurface Infiltration Structure	0.80	0.03	0.02	0.01
TSS Re Calculation		0.00	0.01	0.00	0.01
Cal		0.00	0.01	0.00	0.01
		Total T	99%	Separate Form Needs to be Completed for Each Outlet or BMP Train	
Project: Sena Home Prepared By: CFM Date: 9/13/2021				*Equals remaining load from previous BMP (E) which enters the BMP	

Version 1, Automated: Mar. 4, 2008

ν

APPENDIX H

MassDEP Critical Area Discharge Authorization

DIVISION OF

1 Rabbit Hill Road, Westborough, MA 01581 p: (508) 389-6300 | f: (508) 389-7890 M A S S . G O V / M A S S W I L D L I F E

August 4, 2021

Claudio Sena 146 Georgetown Road Boxford MA 01921

Boxford Conservation Commission 7A Spofford Rd Boxford MA 01921

 RE:
 Applicant:
 Claudio Sena

 Project Location:
 146 Georgetown Road

 Project Description:
 Single Family Home, Rain Garden, Landscaping, Swimming Pool, Patio

 DEP Wetlands File No.:
 Not Issued

 NHESP File No.:
 21-40371

Dear Commissioners & Applicant:

The Natural Heritage & Endangered Species Program of the Massachusetts Division of Fisheries & Wildlife (the "Division") received a Notice of Intent with site plans (dated 5/21/21, revised 6/11/21) in compliance with the rare wildlife species section of the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.59). The Division also received the MESA Review Checklist and supporting documentation for review pursuant to the MA Endangered Species Act Regulations (321 CMR 10.18).

WETLANDS PROTECTION ACT (WPA)

Based on a review of the information that was provided and the information that is currently contained in our database, the Division has determined that this project, as currently proposed, **will not adversely affect** the actual Resource Area Habitat of state-protected rare wildlife species. Therefore, it is our opinion that this project meets the state-listed species performance standard for the issuance of an Order of Conditions.

Please note that this determination addresses only the matter of **rare** wildlife habitat and does not pertain to other wildlife habitat issues that may be pertinent to the proposed project.

MASSACHUSETTS ENDANGERED SPECIES ACT (MESA)

Based on a review of the information that was provided and the information that is currently contained in our database, the Division has determined that this project, as currently proposed, **will not result in a prohibited Take** of state-listed rare species. This determination is a final decision of the Division of Fisheries and Wildlife pursuant to 321 CMR 10.18. Any changes to the proposed project or any additional work beyond that shown on the site plans may require an additional filing with the Division pursuant to the MESA. This project may be subject to further review if no physical work is commenced within five years from the date of issuance of this determination, or if there is a change to the project.

MASSWILDLIFE

Please note that this determination addresses only the matter of state-listed species and their habitats. If you have any questions regarding this letter please contact Emily Holt, Endangered Species Review Assistant, at (508) 389-6385.

Sincerely,

Wase Schluts

Everose Schlüter, Ph.D. Assistant Director

cc: Matthew Marro, Matthew S. Marro Environmental Consulting MA DEP Northeast Region

MASSWILDLIFE

APPENDIX F

Long-Term Pollution Prevention And Stormwater Operation & Maintenance Plan

LONG-TERM POLLUTION PREVENTION AND STORMWATER OPERATION & MAINTENANCE PLAN

Prepared For: Claudio Sena 146 Georgetown Road Boxford, MA 01921

Prepared By:

MF Engineering & Design 966 Hyde Park Avenue #303 Boston, MA 02136

Date: September 27, 2021

Table of Contents

1	Intro	oduction1
	1.1	Responsible Party1
	1.2	Documentation1
	1.3	References1
2	Оре	rations and Maintenance Program2
	2.1	Inspection and Maintenance Frequency2
	2.1.1	Paved Site Access Drive
	2.1.2	2 Yard Cleanout
	2.1.3	Storm Drain Piping
	2.1.4	Flared End Section and Stone Apron
	2.1.5	5 Drainage Inlet
	2.1.6	Vegetated Drainage Swale
	2.1.7	Infiltration Trench
	2.1.8	Infiltration System
	2.1.9	Rain Garden
3	Prac	ctices for Long-Term Pollution Prevention (LTPP)3
	3.1	Good Housekeeping Measures4
	3.1.1	Vehicles Washing Controls4
	3.1.2	Snow Management Guidelines4
	3.1.3	Mosquito Control Guidelines4
	3.1.4	Pet Waste Management4
	3.1.5	Solid Waste Management4
	3.1.6	Material Storage and Spill Prevention4
	3.1.7	Routine Inspection and Maintenance of Stormwater BMPs5
	3.1.8	Maintenance of Landscaped Areas5
	3.1.9	Prohibition of Illicit Discharges

List of Appendices

Appendix A – Inspection and Maintenance Log

Appendix B – Cultec® Operation and Maintenance Guide

1 Introduction

The Long-Term Pollution Prevention (LTPP) and Stormwater Operation and Maintenance (O&M) Plan, filed with the Town of Boxford, shall be implemented at Sena Residence development located at 146 Georgetown Road to ensure long-term functioning of the stormwater management system (System), and to provide suitable practices for source control of pollutants.

The System has been designed in accordance with the ten (10) MassDEP Stormwater Management Standards provided in the Stormwater Management Policy and Massachusetts Wetlands Protection Act, which relate to the protection of wetlands and water bodies, control of water quantity, recharge to groundwater, water quality and protection of critical areas, erosion/sedimentation control and stormwater maintenance. Preventative maintenance of the System is essential in the protection of these interests.

1.1 Responsible Party

The Owner possesses the primary responsibility for overseeing and implementing the LTPP and Stormwater O&M Plan. When necessary the Owner shall designate responsibility to a professional engineer or other technical professional with expertise and experience with stormwater management facilities for the proper operation and maintenance of the System. In case of transfer of property ownership, future property owners shall be notified of the presence of the stormwater management system and the requirements for proper implementation of the LTPP and Stormwater O&M Plan.

Operator Name and Address: Claudio Sena 146 Georgetown Road Boxford, MA 01921

1.2 Documentation

An Inspection and Maintenance Log and Schedule shall be kept by the Owner or designated responsible party summarizing inspections, maintenance, repairs and any corrective actions taken. At a minimum, the Inspection and Maintenance Log Forms shall include the date on which each inspection or maintenance task was performed, date and the amount of the last storm event in excess of 0.1 inches of rain in a 24-hour period, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task.

1.3 References

The LTPP and Stormwater O&M Plan references the following documents:

Notice of Intent Plans:

Plans titled "Notice of Intent, Sena Residence" dated September 25, 2021 (or as amended), prepared by MF Engineering and Design.

Stormwater Management Report:

Report titled "Stormwater Management Report" prepared for Sena Residence dated September 27, 2021 (or as amended), prepared by MF Engineering and Design.

2 **Operations and Maintenance Program**

The Owner or designated responsible party shall conduct the Stormwater O&M Program set forth in this document, ensure that inspections and record keeping are timely and accurate, and that cleaning and maintenance are performed in accordance with the recommended frequency for each System component. The Owner or designated responsible party shall also maintain all System components to function as they were designed to. Estimated annual cost of the Maintenance Program is \$3,000.

Inspection and Maintenance Log Forms shall include the date on which each inspection or maintenance task was performed, date and the amount of the last storm event in excess of 0.1 inches of rain in a 24-hour period, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. Inspection findings shall include items such as physical conditions of the System components, depth of sediment in structures, evidence of overtopping or debris blockage, and maintenance required for each System component. Refer to Appendix A, Inspection and Maintenance Log Form for a sample form.

2.1 Inspection and Maintenance Frequency

The following areas and System components shall be inspected by the Owner or designated responsible party and maintained as specified below. The inspection and maintenance frequencies described below may be adjusted based on results gathered during inspections. Any adjustments to the below-mentioned inspection and maintenance schedule shall be relayed to proper authorities to ensure reporting requirements are met. Any deficiencies to the following areas and systems shall be corrected upon discovery.

2.1.1 Paved Site Access Drive

Street sweeping of paved site access drives and parking areas shall be performed quarterly, with sweeping scheduled primarily in spring, after winter snowmelt, and fall to control the amount of sediment that enter the System.

2.1.2 Yard Cleanout

Yard Cleanouts shall be inspected on an annual basis and cleaned or maintained as necessary. Inspections shall include ensuring the cleanout and cover are in good condition and checking if litter or accumulated sediment is obstructing flow through the structure. Common corrective actions include removal of litter and accumulated sediment.

2.1.3 Storm Drain Piping

Storm drain piping shall be inspected on an annual basis and cleaned or maintained as necessary. Inspection shall include checking if litter or accumulated sediment is obstructing flow. Typical observations that would indicate the storm drain piping is not functioning properly are roof gutter overflows or no discharge of runoff into the detention areas during a storm event. Common corrective actions include removal of litter and accumulated sediment.

2.1.4 Flared End Section and Stone Apron

Flared end sections and stone aprons shall be inspected on a quarterly basis and cleaned or maintained as necessary. Inspection shall include checking if litter or accumulated sediment is obstructing flow, and if there are signs of soil erosion or dislodged stone. Common corrective actions include removal of litter and accumulated sediment, replenishing of stone, and restabilization of eroded areas.

2.1.5 Drainage Inlet

Drainage Inlets will be inspected quarterly and cleaned to ensure that the pipe connections are working in their intended fashion and that they are free of debris. Sediments and hydrocarbons will be properly handled and disposed of off-site, in accordance with local, state, and federal guidelines and regulations. The method of sediment removal will be by hand or vacuum and disposal must be documented.

2.1.6 Vegetated Drainage Swale

Vegetated drainage swales shall be inspected bi-annually and mowed, cleaned, or restabilized as necessary. Inspections shall include ensuring vegetation is adequate, checking for woody vegetation, litter or accumulated sediment is obstructing flow, and checking if there are signs of erosion. Common corrective actions include removal of litter and accumulated sediment, mowing, removal of woody vegetation, and restabilization of eroded areas.

2.1.7 Infiltration Trench

Infiltration trenches shall be inspected bi-annually and mowed, cleaned, or restabilized as necessary. Inspections shall include ensuring vegetation is adequate, checking exposed stones, accumulated sediment is obstructing flow, and checking if there are signs of erosion. Common corrective actions include removal of accumulated sediment, mowing, and re-stabilization of eroded areas.

2.1.8 Infiltration System

The stormwater management system includes subsurface recharge areas constructed of Cultec® Chambers. Inlets to the chambers will be inspected a least bi-annually to ensure the chambers are functioning properly. Cultec® has defined the appropriate inspection and maintenance procedures. Refer to Appendix B Operation & Maintenance Cultec Infiltration System for the procedures.

2.1.9 Rain Garden

The Rain Garden area shall be inspected bi-annually and mowed, cleaned, or restabilized as necessary. Inspections shall include ensuring vegetation is adequate, if litter or accumulated sediment is obstructing the overflow path and checking if there are signs of erosion. Common corrective actions include removal of litter and accumulated sediment, mowing, and re-stabilization of eroded areas.

3 <u>Practices for Long-Term Pollution Prevention (LTPP)</u>

The Owner or designated responsible party shall implement the LTPP practices set forth in this document.

3.1 Good Housekeeping Measures

The Owner or designated responsible party shall implement the following good housekeeping measures to ensure long-term pollution prevention and provide suitable practices for source control of pollutants.

3.1.1 Vehicles Washing Controls

The washing of vehicles is not anticipated at this site. In the event that vehicle washing is conducted at the site, it will be performed in a location where runoff can be collected in the closed stormwater collection system and directed to a stormwater quality unit. Runoff resulting from vehicle washing will not be directly discharged to a wetland.

3.1.2 Snow Management Guidelines

Snow shall not be dumped directly into water bodies, wetlands and surrounding buffer zones, or stormwater BMPs. Snow pile sites shall be in areas with relatively level slopes with stabilized groundcover, and a linear sedimentation control barrier shall be placed securely on the downgradient side of a snow pile. At the end of the snow season, debris accumulated sediment shall be cleared from the snow pile site and properly disposed of in accordance with local, state and federal guidelines and regulations.

3.1.3 Mosquito Control Guidelines

If evidence of mosquitos is found in any of the sediment forebays, larvicide may be applied by a licensed pesticide applicator in compliance with all pesticide label requirements, as well as any applicable local, state, or federal guidelines and regulations.

3.1.4 Pet Waste Management

Scoop up and seal pet waste in a plastic bag and dispose of properly in a closed solid waste container.

3.1.5 Solid Waste Management

Dispose of or recycle solid waste in closed containers and in accordance with any applicable local, state and federal guidelines and regulations.

3.1.6 Material Storage and Spill Prevention

Deicing chemicals, fertilizers, herbicides, pesticides, or other hazardous materials shall be stored under a roof or other structure and shall be kept in original containers unless they are not resealable. Manufacturer's labels and material safety data sheets shall be retained. Try to store only enough product required for the job, and when possible all of a product shall be used before disposing of the container. Manufacturer, local, state and federal guidelines and regulations for proper use and disposal shall be followed.

Manufacturer's recommended methods for spill cleanup shall be clearly posted and site personnel shall be made aware of the procedures and the location of the information and cleanup supplies. Materials and equipment necessary for spill cleanup shall be kept in the material storage area on-site. Equipment and materials shall include, but not be limited to, brooms, dustpans, mops, rags, gloves, goggles, kitty litter, sand or sawdust, as well as plastic and metal containers specifically for this purpose. All spills shall be cleaned up immediately after discovery.

3.1.7 Routine Inspection and Maintenance of Stormwater BMPs

Conduct inspection and maintenance of the stormwater BMPs in accordance with the Stormwater O&M Program discussed above.

3.1.8 Maintenance of Landscaped Areas

Routine mowing shall be conducted on a consistent basis with grass cut to an adequate height to maintain a healthy and full vegetative cover. Bare areas, areas of sparse growth, and signs of erosion shall be addressed in accordance with the Stormwater O&M Program discussed above.

3.1.9 Prohibition of Illicit Discharges

Illicit discharges are discharges that do not entirely consist of stormwater, except for certain specified nonstormwater discharges such as firefighting activities, water line flushing, irrigation systems, lawn watering, and wash water from buildings without detergents. There are no known or proposed illicit connections associated with the Project, however if a potential illicit discharge is detected it shall be investigated to determine the nature and source of the discharge, and if required action shall be taken to eliminate the illicit discharge.

APPENDIX A

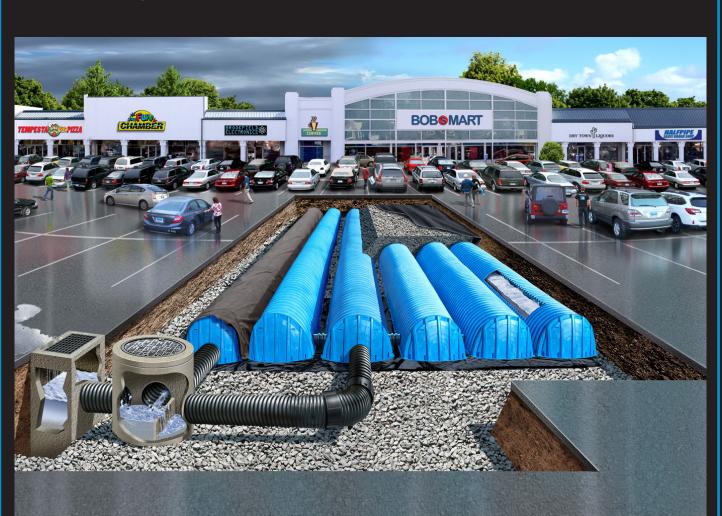
Inspection and Maintenance Log

Sena Residence

SAMPLE Inspection and Maintenance Log Form

Inspector or Maintenance Personnel Name: ______ Date: _____

- Routine
- □ Response to Rainfall Event (_____ inches)
- Other (describe)


BMP	Required Inspection Frequency	Maintenance Frequency	Comments	Follow-up Action Required (Yes / No)
Street Sweeping	Not	Quarterly; Primarily in		
	Applicable	spring, after winter snowmelt, and fall		
Yard Cleanout	Annually	As Needed		
Storm Drain Piping	Annually	As Needed		
Flared End Section and Stone Apron	Quarterly	As Needed		
Drainage Inlet	Quarterly	As Needed		
Vegetated Drainage Swale	Bi-annually	As Needed		
Infiltration Trench	Bi-annually	As Needed		
Rain Garden	Bi-annually	As Needed		

APPENDIX B

Operation & Maintenance Cultec Infiltration System

CULTEC SEPARATOR[™] ROW

WATER QUALITY SYSTEM

OPERATION & MAINTENANCE GUIDE

FOR CULTEC STORMWATER MANAGEMENT SYSTEMS

STORMWATER MANAGEMENT SOLUTIONS

Published by

CULTEC, Inc. P.O. Box 280 878 Federal Road Brookfield, Connecticut 06804 USA www.cultec.com

Copyright Notice

© 2019 CULTEC, Inc. All rights reserved. Printed in the USA.

This document and any accompanying CULTEC products are copyrighted by CULTEC, Inc. Any reproduction and/or distribution without prior written consent from CULTEC, Inc. is strictly prohibited.

Disclaimers:

The drawings, photographs and illustrations shown in this document are for illustrative purposes only and are not necessarily to scale. Actual designs may vary.

CULTEC reserves the right to make design and/or specification changes at any time without notice at CULTEC's sole discretion.

CULTEC is not responsible for typographical errors.

Protected by one or more of the following patents:

Protected by one or more of the following patents:

U.S. Patents 6,129,482; 6,322,288; 6,854,925; 7,226,241; 7,806,627; 8,366,346; 8,425,148; and others; U.S. Designs D613819; D638,095; D668,318 and others; Canadian Patent 2,591,255 and others; Community Designs 1092191; 1745209; and others.

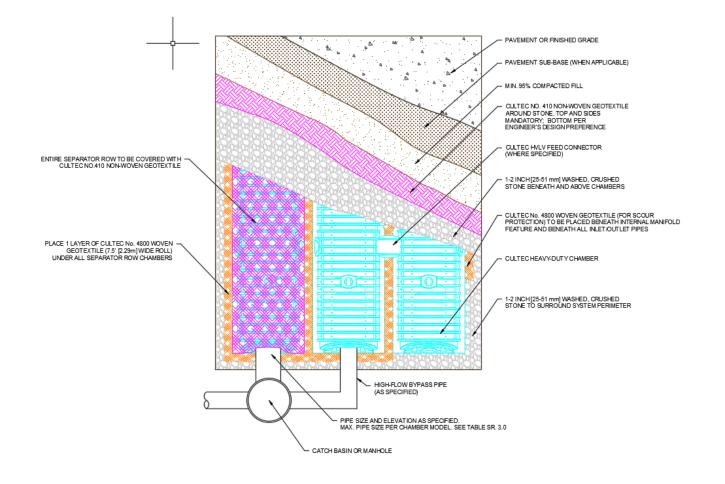
CULTEC, the CULTEC logo, RECHARGER, CONTACTOR, HVLV, PAC, STORMFILTER, STORMGENIE and The Chamber with The Stripe are registered trademarks of CULTEC, Inc. Chamber of Choice, 902, HD, 100, 125, 150, 150XL, 180, 280, 330, 330XL, V8, 902, Field Drain Panel, C-1, C-2, C-3, C-4, EZ-24, Landscape Series are trademarks of CULTEC, Inc. All rights reserved.

Contact Information:

For general information on our other products and services, please contact our offices within the United States at (800)428-5832, (203)775-4416 ext. 202, or e-mail us at custservice@cultec.com.

For technical support, please call (203)775-4416 ext. 203 or e-mail tech@cultec.com.

Visit www.cultec.com/downloads.html for Product Downloads and CAD details.

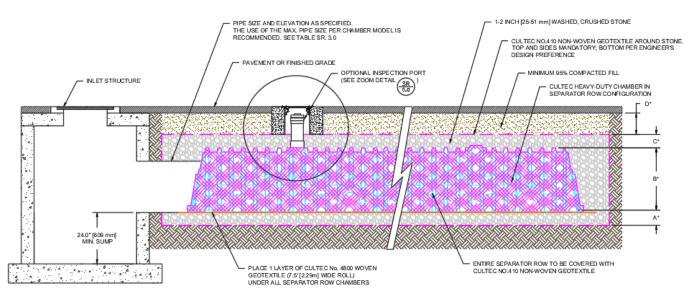

Doc ID: CLT043 12-19 December 2019

Introduction

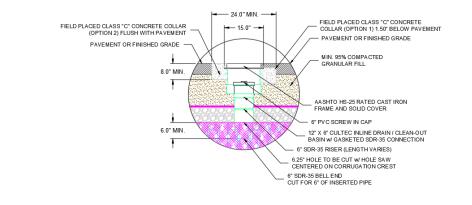
CULTEC's Separator[™] Row is an inexpensive means of removing Total Suspended Solids from the CULTEC chamber system, as well as providing easier access for inspection and maintenance. The Separator Row is designed to capture the First Flush of a rain event and is typically included as part of the "Treatment Train" for water quality.

The CULTEC Separator Row is a row of CULTEC Contactor or Recharger Chambers that are surrounded on all sides by filter fabric. One layer of CULTEC No. 4800[™] Woven Geotextile are placed between the clean foundation stone and the chamber feet. The chambers are then completely wrapped with CULTEC No. 410[™] non-woven geotextile. This configuration is designed to trap any sediment and/or debris that may pass through the upstream water-quality structures and into the chamber system. A manhole is typically located adjacent to the separator row for ease of inspection and maintenance. This manhole is placed upstream of the system and can include a high-flow bypass pipe to pass peak-flows onto adjacent rows of chambers. The upstream manhole is designed with a sump to trap heavier sediment and allow for proper cleaning of the Separator Row. A JetVac process with a high pressure water nozzle is introduced down the Separator Row via the access manhole to clean all sediment and debris from the Separator Row. Captured pollutants are flushed into the sumped access manhole for vacuuming, and the process is repeated until the Separator Row is completely free of sediment and debris.

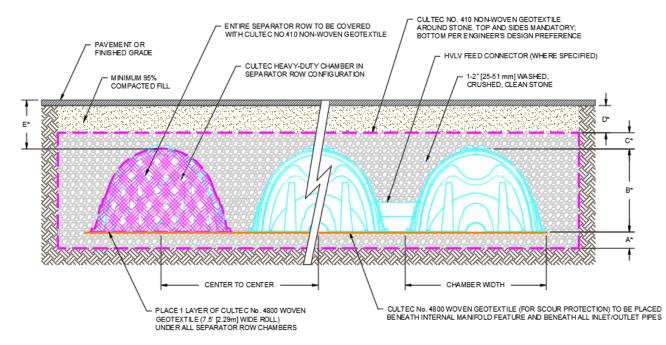
Design


There is no single design to achieve a high level of water quality. The CULTEC Separator Row should be designed as part of an overall best management practices water quality system. Pre-treatment devices such as sump catch basins, inlet baffles and proprietary oil-grit separators and filter systems can all be incorporated upstream of the CULTEC Separator Row. Sumped access/ diversion manholes should be installed directly upstream of the Separator Row.

The following is a list of recommended design practices to ensure proper maintenance for the life of the system:


• Install sumped access/diversion manholes, including a minimum 24" (600 mm) sump, directly upstream of the Separator Row.

- Include a high-flow bypass pipe to divert peak flows that exceed the capacity of the Separator Row to adjacent rows.
- Connect the access manhole to the Separator Row with the largest diameter pipe allowable based on the CULTEC chamber model used.
- Maintain a minimum distance between the access manhole and the Separator Row to promote efficient maintenance.
- Include at least one inspection port per Separator Row for periodic inspection.


Note: Typical JetVac maintenance reels have a maximum of 400 feet (121.9 m) of available hose. Consider this when designing the length of the CULTEC Separator Rows.

CULTEC

Table SR 3.0

	Description	Contactor 100HD	Recharger 150XLHD	Recharger 280HD	Recharger 330XLHD	Recharger 902HD
А	Min. depth of stone base	6″ 152 mm	6″ 152 mm	6″ 152 mm	6″ 152 mm	9″ 229 m
В	Chamber height	12.5″ 318 mm	18.5″ 470 mm	26.5″ 673 mm	30.5″ 775 mm	48″ 1219 mm
С	Min. depth of stone required above units for traffic applications	6″ 152 mm	6″ 152 mm	6″ 152 mm	6″ 152 mm	12″ 305 mm
D	Min. depth required of 95% com- pacted fill for paved traffic application	8″ 203 mm	8″ 203 mm	8″ 203 mm	10″ 254 mm	12″ 3305 mm
Е	Max. depth of cover allowed above crown of chamber	12′ 3.65 m	12′ 3.65 m	12′ 3.65 m	12′ 3.65 m	8.5′ 2.59 m
	Max. allowable pipe size into chamber end wall/end cap	10″ 250 mm	12″ 300 mm	18″ 450 mm	24″ 600 mm	24″ 600 mm

For more information, contact CULTEC at (203) 775-4416 or visit www.cultec.com.

Inspection and Maintenance

CULTEC recommends inspection of the Separator Row to be performed every six months for the first year of service. Future inspection frequency can be adjusted based upon previous inspection observations. However annual inspections are recommended. Inspection of the Separator Row can be achieved via an inspection port riser installed during construction. This inspection port riser will connect the top of the Separator Row chambers to finished grade with a removable lid. Alternatively the Separator Row may be inspected via the manhole(s) located at the end(s) of the Separator Row. However this method of inspection requires confined space entry. If entry into the manhole is required, all local and OSHA rules for confined space entries must be strictly followed.

To inspect:

• Remove the inspection port lid from the floor box frame.

High pressure water nozzle

SEPARATOR ROW: Separator Row prior to cleaning

- Remove the riser pipe cap.
- With a flashlight and stadia rod, measure the depth of sediment.
- Record results in a maintenance log.
- When depth of sediment exceeds 3" (76 mm), use the JetVac procedure described below.

The JetVac process utilizes a high pressure water nozzle controlled from the surface. The high pressure nozzle is introduced down the Separator Row via the access manhole(s). The high pressure water cleans all sediment and debris from the Separator Row as the nozzle is retrieved. Captured pollutants are flushed into the sumped access manhole for vacuuming. This process is repeated until the Separator Row is completely free of sediment and debris. A small diameter culvert cleaning nozzle is recommended for this procedure.

Cleaning Separator Row and pipes with high pressure water nozzle

ADJACENT ROW: When the Separator Row is working properly, the adjacent rows will not show signs of sediment.

Inspection and Maintenance Record

Notes	Depth of Sediment was mea- sured via Northeast Inspec- tion Port Adjacent to MH-1. Sediment depth was found to be 2". No further action required at this time.				
	Depth of Se sured via N tion Port Ad Sediment d to be 2". No required at				
Inspector	DPG				
Expenses	\$100				
Actions	Measure sediment depth with stadia rod. Visually inspect				
Depth of Sediment	2"				
Frequency	Semi-annually	Annually			
Mode of Access	Inspection Port	Access Manhole			
Date	Ex.	EX.			

CULTEC

CULTEC, Inc. 878 Federal Road • P.O. Box 280 • Brookfield, CT 06804 USA P: (203) 775-4416 • Toll Free: 1(800) 4-CULTEC • www.cultec.com

RETENTION • DETENTION • INFILTRATION • WATER QUALITY

CULTEC, Inc. 878 Federal Road • P.O. Box 280 • Brookfield, CT 06804 USA P: (203) 775-4416 • Toll Free: 1(800) 4-CULTEC • www.cultec.com

RETENTION • DETENTION • INFILTRATION • WATER QUALITY

APPENDIX A

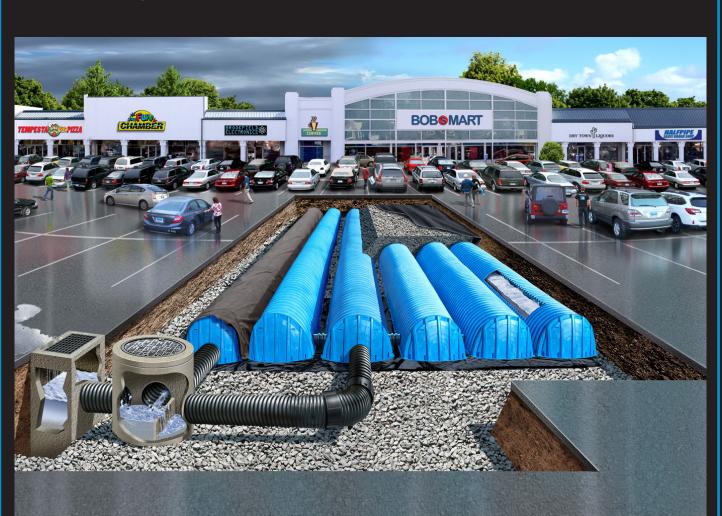
Inspection and Maintenance Log

Sena Residence

SAMPLE Inspection and Maintenance Log Form

Inspector or Maintenance Personnel Name: ______ Date: _____

- Routine
- □ Response to Rainfall Event (_____ inches)
- Other (describe)


BMP	Required Inspection Frequency	Maintenance Frequency	Comments	Follow-up Action Required (Yes / No)
Street Sweeping	Not	Quarterly; Primarily in		
	Applicable	spring, after winter snowmelt, and fall		
Yard Cleanout	Annually	As Needed		
Storm Drain Piping	Annually	As Needed		
Flared End Section and Stone Apron	Quarterly	As Needed		
Drainage Inlet	Quarterly	As Needed		
Vegetated Drainage Swale	Bi-annually	As Needed		
Infiltration Trench	Bi-annually	As Needed		
Rain Garden	Bi-annually	As Needed		

APPENDIX B

Operation & Maintenance Cultec Infiltration System

CULTEC SEPARATOR[™] ROW

WATER QUALITY SYSTEM

OPERATION & MAINTENANCE GUIDE

FOR CULTEC STORMWATER MANAGEMENT SYSTEMS

STORMWATER MANAGEMENT SOLUTIONS

Published by

CULTEC, Inc. P.O. Box 280 878 Federal Road Brookfield, Connecticut 06804 USA www.cultec.com

Copyright Notice

© 2019 CULTEC, Inc. All rights reserved. Printed in the USA.

This document and any accompanying CULTEC products are copyrighted by CULTEC, Inc. Any reproduction and/or distribution without prior written consent from CULTEC, Inc. is strictly prohibited.

Disclaimers:

The drawings, photographs and illustrations shown in this document are for illustrative purposes only and are not necessarily to scale. Actual designs may vary.

CULTEC reserves the right to make design and/or specification changes at any time without notice at CULTEC's sole discretion.

CULTEC is not responsible for typographical errors.

Protected by one or more of the following patents:

Protected by one or more of the following patents:

U.S. Patents 6,129,482; 6,322,288; 6,854,925; 7,226,241; 7,806,627; 8,366,346; 8,425,148; and others; U.S. Designs D613819; D638,095; D668,318 and others; Canadian Patent 2,591,255 and others; Community Designs 1092191; 1745209; and others.

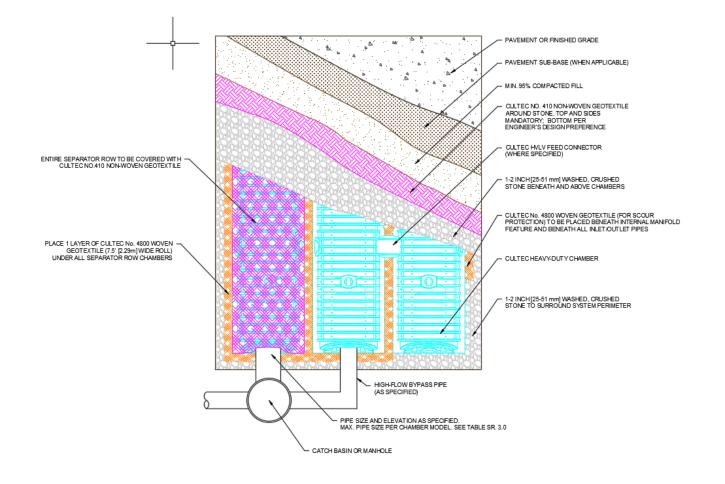
CULTEC, the CULTEC logo, RECHARGER, CONTACTOR, HVLV, PAC, STORMFILTER, STORMGENIE and The Chamber with The Stripe are registered trademarks of CULTEC, Inc. Chamber of Choice, 902, HD, 100, 125, 150, 150XL, 180, 280, 330, 330XL, V8, 902, Field Drain Panel, C-1, C-2, C-3, C-4, EZ-24, Landscape Series are trademarks of CULTEC, Inc. All rights reserved.

Contact Information:

For general information on our other products and services, please contact our offices within the United States at (800)428-5832, (203)775-4416 ext. 202, or e-mail us at custservice@cultec.com.

For technical support, please call (203)775-4416 ext. 203 or e-mail tech@cultec.com.

Visit www.cultec.com/downloads.html for Product Downloads and CAD details.

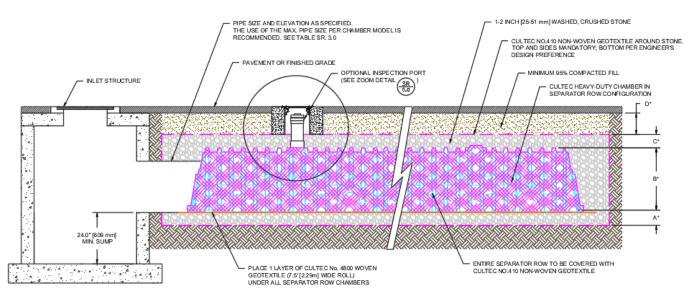

Doc ID: CLT043 12-19 December 2019

Introduction

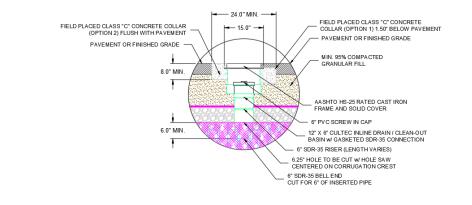
CULTEC's Separator[™] Row is an inexpensive means of removing Total Suspended Solids from the CULTEC chamber system, as well as providing easier access for inspection and maintenance. The Separator Row is designed to capture the First Flush of a rain event and is typically included as part of the "Treatment Train" for water quality.

The CULTEC Separator Row is a row of CULTEC Contactor or Recharger Chambers that are surrounded on all sides by filter fabric. One layer of CULTEC No. 4800[™] Woven Geotextile are placed between the clean foundation stone and the chamber feet. The chambers are then completely wrapped with CULTEC No. 410[™] non-woven geotextile. This configuration is designed to trap any sediment and/or debris that may pass through the upstream water-quality structures and into the chamber system. A manhole is typically located adjacent to the separator row for ease of inspection and maintenance. This manhole is placed upstream of the system and can include a high-flow bypass pipe to pass peak-flows onto adjacent rows of chambers. The upstream manhole is designed with a sump to trap heavier sediment and allow for proper cleaning of the Separator Row. A JetVac process with a high pressure water nozzle is introduced down the Separator Row via the access manhole to clean all sediment and debris from the Separator Row. Captured pollutants are flushed into the sumped access manhole for vacuuming, and the process is repeated until the Separator Row is completely free of sediment and debris.

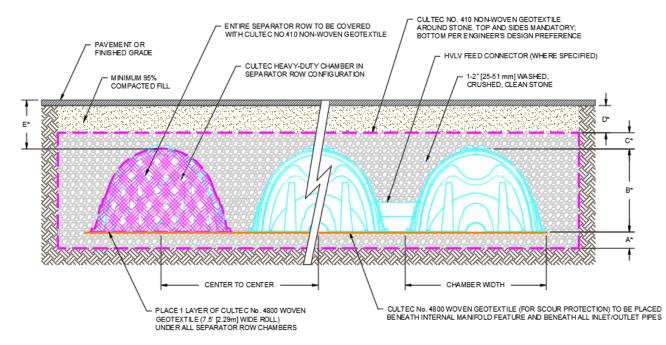
Design


There is no single design to achieve a high level of water quality. The CULTEC Separator Row should be designed as part of an overall best management practices water quality system. Pre-treatment devices such as sump catch basins, inlet baffles and proprietary oil-grit separators and filter systems can all be incorporated upstream of the CULTEC Separator Row. Sumped access/ diversion manholes should be installed directly upstream of the Separator Row.

The following is a list of recommended design practices to ensure proper maintenance for the life of the system:


• Install sumped access/diversion manholes, including a minimum 24" (600 mm) sump, directly upstream of the Separator Row.

- Include a high-flow bypass pipe to divert peak flows that exceed the capacity of the Separator Row to adjacent rows.
- Connect the access manhole to the Separator Row with the largest diameter pipe allowable based on the CULTEC chamber model used.
- Maintain a minimum distance between the access manhole and the Separator Row to promote efficient maintenance.
- Include at least one inspection port per Separator Row for periodic inspection.


Note: Typical JetVac maintenance reels have a maximum of 400 feet (121.9 m) of available hose. Consider this when designing the length of the CULTEC Separator Rows.

CULTEC

Table SR 3.0

	Description	Contactor 100HD	Recharger 150XLHD	Recharger 280HD	Recharger 330XLHD	Recharger 902HD
А	Min. depth of stone base	6″ 152 mm	6″ 152 mm	6″ 152 mm	6″ 152 mm	9″ 229 m
В	Chamber height	12.5″ 318 mm	18.5″ 470 mm	26.5″ 673 mm	30.5″ 775 mm	48″ 1219 mm
С	Min. depth of stone required above units for traffic applications	6″ 152 mm	6″ 152 mm	6″ 152 mm	6″ 152 mm	12″ 305 mm
D	Min. depth required of 95% com- pacted fill for paved traffic application	8″ 203 mm	8″ 203 mm	8″ 203 mm	10″ 254 mm	12″ 3305 mm
Е	Max. depth of cover allowed above crown of chamber	12′ 3.65 m	12′ 3.65 m	12′ 3.65 m	12′ 3.65 m	8.5′ 2.59 m
	Max. allowable pipe size into chamber end wall/end cap	10″ 250 mm	12″ 300 mm	18″ 450 mm	24″ 600 mm	24″ 600 mm

For more information, contact CULTEC at (203) 775-4416 or visit www.cultec.com.

Inspection and Maintenance

CULTEC recommends inspection of the Separator Row to be performed every six months for the first year of service. Future inspection frequency can be adjusted based upon previous inspection observations. However annual inspections are recommended. Inspection of the Separator Row can be achieved via an inspection port riser installed during construction. This inspection port riser will connect the top of the Separator Row chambers to finished grade with a removable lid. Alternatively the Separator Row may be inspected via the manhole(s) located at the end(s) of the Separator Row. However this method of inspection requires confined space entry. If entry into the manhole is required, all local and OSHA rules for confined space entries must be strictly followed.

To inspect:

• Remove the inspection port lid from the floor box frame.

High pressure water nozzle

SEPARATOR ROW: Separator Row prior to cleaning

- Remove the riser pipe cap.
- With a flashlight and stadia rod, measure the depth of sediment.
- Record results in a maintenance log.
- When depth of sediment exceeds 3" (76 mm), use the JetVac procedure described below.

The JetVac process utilizes a high pressure water nozzle controlled from the surface. The high pressure nozzle is introduced down the Separator Row via the access manhole(s). The high pressure water cleans all sediment and debris from the Separator Row as the nozzle is retrieved. Captured pollutants are flushed into the sumped access manhole for vacuuming. This process is repeated until the Separator Row is completely free of sediment and debris. A small diameter culvert cleaning nozzle is recommended for this procedure.

Cleaning Separator Row and pipes with high pressure water nozzle

ADJACENT ROW: When the Separator Row is working properly, the adjacent rows will not show signs of sediment.

Inspection and Maintenance Record

Notes	Depth of Sediment was mea- sured via Northeast Inspec- tion Port Adjacent to MH-1. Sediment depth was found to be 2". No further action required at this time.				
	Depth of Se sured via N tion Port Ad Sediment d to be 2". No required at				
Inspector	DPG				
Expenses	\$100				
Actions	Measure sediment depth with stadia rod. Visually inspect				
Depth of Sediment	2"				
Frequency	Semi-annually	Annually			
Mode of Access	Inspection Port	Access Manhole			
Date	Ex.	EX.			

CULTEC

CULTEC, Inc. 878 Federal Road • P.O. Box 280 • Brookfield, CT 06804 USA P: (203) 775-4416 • Toll Free: 1(800) 4-CULTEC • www.cultec.com

RETENTION • DETENTION • INFILTRATION • WATER QUALITY

CULTEC, Inc. 878 Federal Road • P.O. Box 280 • Brookfield, CT 06804 USA P: (203) 775-4416 • Toll Free: 1(800) 4-CULTEC • www.cultec.com

RETENTION • DETENTION • INFILTRATION • WATER QUALITY

APPENDIX J

Illicit Discharge Statement Standard 10

Structural Engineering • Building Design • Civil Engineering • Management Services

ILLICIT DISCHARGE COMPLIANCE STATEMENT

Project No. B05377

Owner Name: Claudio Sena

Site Address: 146 Georgetown Road, Boxford MA

Date: 09/20/2021

Dear Mr. Povenmire,

This statement is provided in accordance with the provisions of Massachusetts Stormwater Management Standards (the Standards), Standard 10, and the Massachusetts Stormwater Handbook.

To the best of the Owners and Engineers knowledge, no illicit discharges exist on the Project Site and no illicit discharges are proposed as part of the Project. The facility's Operation & Maintenance Plans are designed to prevent non-stormwater discharge to on-site stormwater Best Management Practices. Any illicit discharges identified during or after construction will be immediately disconnected in accordance with the Standards.

Carlos Ferreira, MSc, PE

APPENDIX I

Notice of Intent Plans

General Notes

1. THE GENERAL CONTRACTOR IS TO BE RESPONSIBLE FOR THE HORIZONTAL AND VERTICAL CONTROL OF ALL SYSTEM COMPONENTS.

2. THIS PLAN IS TO SHOW THE DESIGN OF THE SUBSURFACE DISPOSAL THIS PLAN IS TO SHOW THE DESIGN OF THE SUBSURFACE DISPOSAL SYSTEM ONLY. THE SYSTEM IS DESIGNED FOR FLOWS ESTIMATED UNDER DESIGN CONDITIONS.

3. THE SYSTEM IS DESIGNED ONLY TO ACCOMMODATE SANITARY SEWAGE ASSOCIATED WITH NORMAL DOMESTIC USAGE AND CONSISTING OF WATER-CARRIED PUTRESCIBLE WASTE

4. THIS SYSTEM IS NOT DESIGNED FOR GARBAGE GRINDERS.

5. THE SYSTEM SHALL BE VENTED THROUGH THE BUILDING PLUMBING AS REQUIRED BY BUILDING CODE.

6. PROPERTY LINES AND BUILDING LOCATIONS ARE GRAPHIC ONLY. PROPERTY LINES NOT HAVING BEEN VERIFIED, NO REPRESENTATION OR CERTIFICATION AS TO THE ACCURACY OF THOSE SHOWN IS IMPLIED OR INTENDED.

7. APPLICABLE ZONING REGULATIONS SHALL BE CONFIRMED BY THE OWNER PRIOR TO CONSTRUCTION.

8. THE PLAN SHOWS ONLY THOSE FEATURES THAT WERE VISUALLY APPARENT ON THE DATE OF SURVEY AND THE ABSENCE OF SUBSURFACE STRUCTURES, UTILITIES, ETC., IS NOT INTENDED OR IMPLIED.

9. THE INSTALLER OF THE SYSTEM MUST BE LICENSED BY THE LOCAL BOARD OF HEALTH.

10. THERE ARE NO EXISTING WELLS WITHIN 150' FEET OF THE PROPOSED SEWAGE DISPOSAL SYSTEM OR WITHIN 50' OF THE SEPTIC TANK.

11. DISPOSAL SYSTEM AREA IS TO BE RAKED (SCARIFIED) BEFORE DISPOSAL SYSTEM AREA IS TO BE RAKED (SCARIFIED) BEFORE INSTALLATION OF STONE. ALL STONES EXCEEDING 2-INCHES IN DIAMETER, ALL LOAM OR FOREIGN MATERIAL ENCOUNTERED DURING EXCAVATION SHALL BE REMOVED FROM THE LEACHING AREA BED SURFACE.

12. FINISHED SURFACE OF THE LEACHING AREA SHALL BE GRADED TO ASSURE WATER RUN-OFF.

13. ALL DISTURBED AREAS SHALL BE LOOMED, SEEDED, AND MAINTAINED TO PREVENT EROSION.

14. THE SEPTIC TANK SHOULD BE PERIODICALLY INSPECTED AND MAINTAINED AND SHOULD BE PUMPED WHEN SLUDGE IN THE BOTTOM EXCEEDS 1/4 OF DEPTH.

15. ALTERNATE MANUFACTURERS FOR CONCRETE STRUCTURES AND EQUIPMENT SHOWN ON THESE PLANS MAY BE USED UPON THE WRITTEN APPROVAL OF THE DESIGN ENGINEER. ALTERNATE MANUFACTURERS SHALL NOT BE USED IF THE USE OF THE EQUIPMENT REQUIRES DESIGN CHANGES.

16. IF ANY PART OF THE DESIGN IS TO BE ALTERED IN ANY WAY, THE DESIGN ENGINEER, AS WELL AS THE APPROVING AUTHORITIES SHALL BE NOTIFIED IN WRITING PRIOR TO CONSTRUCTION.

17. ALL WORK SHALL COMPLY WITH THE COMMONWEALTH OF MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION - STATE SANITARY CODE TITLE 5 AND ANY BOARD OF HEALTH SUPPLEMENTAL REGULATIONS.

18. THE LOCAL BOARD OF HEALTH WILL CONDUCT PERIODIC INSPECTIONS AS NEEDED.

19. A RESIDENT INSPECTOR FROM MF ENGINEERING SHALL BE ON SITE TO: (a) INSPECT THE INSTALLATION OF ALL CONCRETE STRUCTURES PRIOR TO BEING BACKFILLED, (b) INSPECT THE BOTTOM OF THE LEACH BED AT THE TIME IT IS SCARIFIED, AND (c) INSPECT THE LEACH BED AREA PRIOR TO BEING BACKFILLED. THE DESIGN ENGINEER AND THE LOCAL BOARD OF HEALTH SHALL BE GIVEN AT LEAST 48 HOURS NOTICE BY THE GENERAL CONTRACTOR PRIOR TO COMMENCEMENT OF THE ABOVE CONSTRUCTION OPERATIONS. THE DESIGN ENGINEER SHALL SUBMIT AN AS-BUILT SKETCH OF THE SYSTEM TO THE BOARD OF HEALTH WITHIN 2 WEEKS OF COMPLETION.

20. THESE PLANS AND SPECIFICATIONS ARE INTENDED TO ENCOMPASS THE PROPOSED WORK. SHOULD ANY OMISSIONS, ERRORS, OR DISCREPANCIES OCCUR, THE ENGINEER MUST BE NOTIFIED IMMEDIATELY AND THESE PLANS AND SPECIFICATIONS SHALL BE SUBJECT TO CORRECTION AND INTERPRETATION BY THE DESIGN ENGINEER, THEREBY DEFINING AND FULFILLING THE INTENT OF THE DESIGN.

21. THERE ARE NO SURFACE WATER SUPPLIES OR TRIBUTARIES TO RESERVOIRS WITHIN 100' OF THE PROPOSED LEACHING AREA AND OF THE PROPOSED SEPTIC TANK.

22. THERE ARE NO EXISTING OR PROPOSED CATCH BASINS, SUBSURFACE DRAINS, INCLUDING FOUNDATION DRAINS OR DRYWALLS WITHIN 25' OF THE 25' OF THE OF THE PROPOSED LEACHING AREA AND SEPTIC TANK.

23. ALL CONNECTIONS AND JOINTS SHALL BE MECHANICALLY SOUND AND TIGHT.

24. EFFLUENT DISTRIBUTION LINE OUTLET ORIFICES SHALL BE EVENLY SPACED ALONG TWO ROWS RUNNING THE LENGTH OF THE LINE, ON EACH SIDE, MIDWAY BETWEEN THE INVERT AND CENTERLINE WHICH SEPARATES THE UPPER AND LOWER HALVES OF THE PIPE. FOR GRAVITY DISTRIBUTION, ORIFICES SHALL BE NO SMALLER THAN 3/8-INCH AND NO LARGER THAN 5/8-INCH DIAMETER.

25. EFFLUENT DISTRIBUTION LINES SHALL HAVE A SLOPE OF 0.005 FEET PER FOOT AND SHALL HAVE ENDS CAPPED OR CONNECTED TOGETHER BY UNPERFORATED PIPE OF THE SAME MATERIAL SPECIFICATIONS.

26. DISTRIBUTION LINES CONNECTING THE DISTRIBUTION BOX OR PUMP CHAMBER TO THE SOIL ABSORPTION SYSTEM SHALL BE UNPERFORATED WITH WATER TIGHT CONNECTIONS AND JOINTS.

27. DISTRIBUTION LINES EXCEEDING 50-FEET IN LENGTH SHALL BE CONNECTED AND VENTING PROVIDED IN ACCORDANCE WITH 310 CMR 15.241.

28. THE 15' DISTANCE FOR BREAKOUT IS MEASURED HORIZONTALLY FROM THE TOP OF STONE. *SEE PLAN & PROFILE.

29. BOTTOM AND SIDEWALL AREA TO BE SCARIFIED TO A DEPTH OF 1-INCH PRIOR TO PLACEMENT OF STONE.

30. THE CONTRACTOR IS RESPONSIBLE FOR ALL PLUMBING FOR THE PROPOSED DWELLING AND IS TO ASSURE THAT ALL INTERIOR PLUMBING IS PROPERLY CONNECTED TO THE PROPOSED SEPTIC TANK. IN CASES OF REPAIRS, CONTRACTOR SHALL CONFIRM THAT ALL INTERIOR PLUMBING WILL BE ABLE TO FLOW TO THE PROPOSED SEPTIC TANK PRIOR TO CONSTRUCTION. AT A MINIMUM, THE CONTRACTOR SHALL USE A DYE TEST OR CAMERA TO CONFIRM EXISTING PLUMBING. CONTRACTOR SHALL REPORT ANY DISCREPANCY TO THE LOCAL BOARD OF HEALTH AND DESIGN ENGINEER PRIOR TO CONSTRUCTION.

31. WETLANDS: FLAGGED BY RIMMER ENVIRONMENTAL CONSULTING INC. AND APPROVED BY THE BOXFORD CONSERVATION COMMISSION.

SHEET NO.
C-101
C-102
C-103
C-104
C-105
C-106
C-501-502

NOTICE OF INTENT (NOI) SENA RESIDENCE 146 GEORGETOWN ROAD BOXFORD, MA

40' 80' SCALE: 1" = 80'

SHEET TITLE COVER SHEET EXISTING CONDITIONS AND EROSION CONTROL PLAN GRADING AND DRAINAGE PLAN SEPTIC SYSTEM DESIGN AND CALCULATIONS SEPTIC SYSTEM PROFILES AND DETAILS EXISTING LANDSCAPE PLAN PROPOSED LANDSCAPE PLAN CONSTRUCTION DETAILS

CONTRACTOR SHALL COORDINATE WITH THE DESIGN ENGINEER AND AT A MINIMUM MAKE THE FOLLOWING SYSTEM COMPONENTS OPEN & ACCESSIBLE FOR HORIZONTAL AND VERTICAL LOCATION FOR AS-BUILT PLANS:

ALL PIPES LEACHING FIELD, TRENCHES AND OR GALLERIES D-BOX SEPTIC TANK VENTS PUMP CHAMBER, ELECTRICAL HAND-HOLE IMPERVIOUS BARRIER (40 MIL HDPE POLYVINYL CHLORIDE FLEXIBLE MEMBRANE) - IF APPLICABLE. INVERT AT BUILDING ANY OTHER APPLICABLE SYSTEM COMPONENTS

AS-BUILT NOTES: WHEN AN IMPERVIOUS BARRIER (40 MIL HDPE POLYVINYL CHLORIDE FLEXIBLE MEMBRANE) IS INSTALLED CONTRACTOR SHALL LEAVE TOP EXPOSED FOR HORIZONTAL AND VERTICAL LOCATION. WHEN PRESSURE DOSING, CONTRACTOR SHALL HAVE ALL ELECTRICAL CONNECTIONS INCLUDING ALARM COMPLETED PRIOR TO AS-BUILT. PUMPS SHALL BE TESTED AND PUMP DRAW DOWN CONFIRMED. WHERE APPLICABLE, THE SQUIRT HEIGHT SHALL BE MEASURED AND RECORDED.

Material Notes

IN NOTE 'A' ABOVE.

2. CONCRETE STRUCTURES: CONCRETE STRUCTURES SHALL BE 4000 PSI AT 28 DAYS WITH A 6" x 6" x 10" GAUGE STEEL WIRE MESH. USE HYDRAULIC COMPOUND CONNECTIONS TO PROVIDE WATER TIGHTNESS AT SEPTIC TANK AND DISTRIBUTION BOX INLET & OUTLETS. SEPTIC TANK CONSTRUCTION JOINTS SHALL BE SEALED WITH ASPHALT CEMENTS.

3. PIPE MATERIALS: PIPE MATERIALS: DISTRIBUTION LINES FOR LEACHING TRENCHES SHALL BE CONSTRUCTED OF POLYVINYL CHLORIDE (PVC) PLASTIC (ASTM 26655), SCHEDULE 40 NSF. FORCEMAIN LINES SHALL BE INSTALLED TO GUARD AGAINST FREEZING.

4. SYSTEM FILL: SYSTEM FILL: FILL MATERIAL FOR SYSTEMS CONSTRUCTED IN FILL SHALL CONSIST OF ON-SITE OR IMPORTED SOIL MATERIAL. THE FILL SHALL BE COMPRISED OF CLEAN GRANULAR SAND, FREE FROM ORGANIC MATTER AND DELETERIOUS SUBSTANCES. MIXTURES AND DIFFERENT CLASSES OF SOIL SHALL NOT BE USED. THE FILL SHALL NOT CONTAIN ANY MATERIAL LARGER THAN 2 INCHES. A SIEVE ANALYSIS, USING A #4 SIEVE, SHALL BE PERFORMED ON A REPRESENTATIVE SAMPLE OF THE FILL. UP TO 45% BY WEIGHT OF THE FILL SAMPLE MAY BE RETAINED ON THE #4 SIEVE. SIEVE ANALYSIS ALSO SHALL BE PERFORMED ON THE FRACTION OF THE FILL SAMPLE PASSING THE #4 SIEVE, SUCH ANALYSES MUST DEMONSTRATE THAT THE MATERIAL MEETS EACH OF THE FOLLOWING SPECIFICATIONS.

SIEVE SIZE **#**50 #100 #200

SUBSURFACE DISPOSAL SYSTEM & MAINTENANCE

A SEPTIC SYSTEM IS USED TO DISPOSE AND TREAT HOUSEHOLD SEWAGE. IT CONSISTS OF A RECTANGULAR WATER TIGHT BOX (THE SEPTIC TANK) AND A LEACHING AREA. WASTE WATER FROM THE HOUSE FLOWS DIRECTLY INTO THE SEPTIC TANK. THERE THE LARGER SOLIDS SETTLE TO THE BOTTOM, FORMING A LAYER OF SLUDGE. THE LIGHTER PARTICLES RISE TO THE SURFACE, FORMING A LAYER OF SCUM. BACTERIA IN THE TANK WORK TO DECOMPOSE THE SOLIDS IN THESE LAYERS. IN SPITE OF THIS DECOMPOSITION, REGULAR REMOVAL OF THE SLUDGE LAYER IS NECESSARY, EVEN UNDER NORMAL CONDITIONS, AS IT WILL EVENTUALLY BUILD UP TO THE POINT WHERE SLUDGE OVERFLOWS THROUGH THE OUTLET PIPE AND INTO THE LEACHING AREA. THIS MAY BLOCK THE ENTIRE LEACHING AREA, THUS CAUSING SYSTEM FAILURE. THEREFORE, A REGULAR SEPTIC TANK PUMPING SCHEDULE IS RECOMMENDED TO AVOID LEACHING AREA PROBLEMS. CONTACT THE LOCAL BOARD OF HEALTH FOR RECOMMENDED PUMPING SCHEDULE. THE LIQUID PORTION OF THE SEWAGE FLOWS FROM THE SEPTIC TANK TO THE LEACHING SYSTEM, WHICH CONSISTS OF A SERIES OF PERFORATED PIPES OR A PRECAST PIT PLACED IN TRENCHES OR BEDS OF WASHED STONE. THIS SYSTEM DISTRIBUTES THE LIQUID SEWAGE INTO THE SURROUNDING SOIL, WHERE IT IS FILTERED AND TREATED.

1. IN ACCORDANCE WITH CHAPTER 82 SECTION 40 IN ACCORDANCE WITH CHAPTER 82 SECTION 40 INCLUDING AMENDMENTS, THE CONTRACTOR SHALL NOTIFY IN WRITING ALL UTILITY COMPANIES AND GOVERNMENT AGENCIES PRIOR TO EXCAVATION WORK AND CALL DIG-SAFE AT 1-800-DIG-SAFE PRIOR TO COMMENCING WORK.

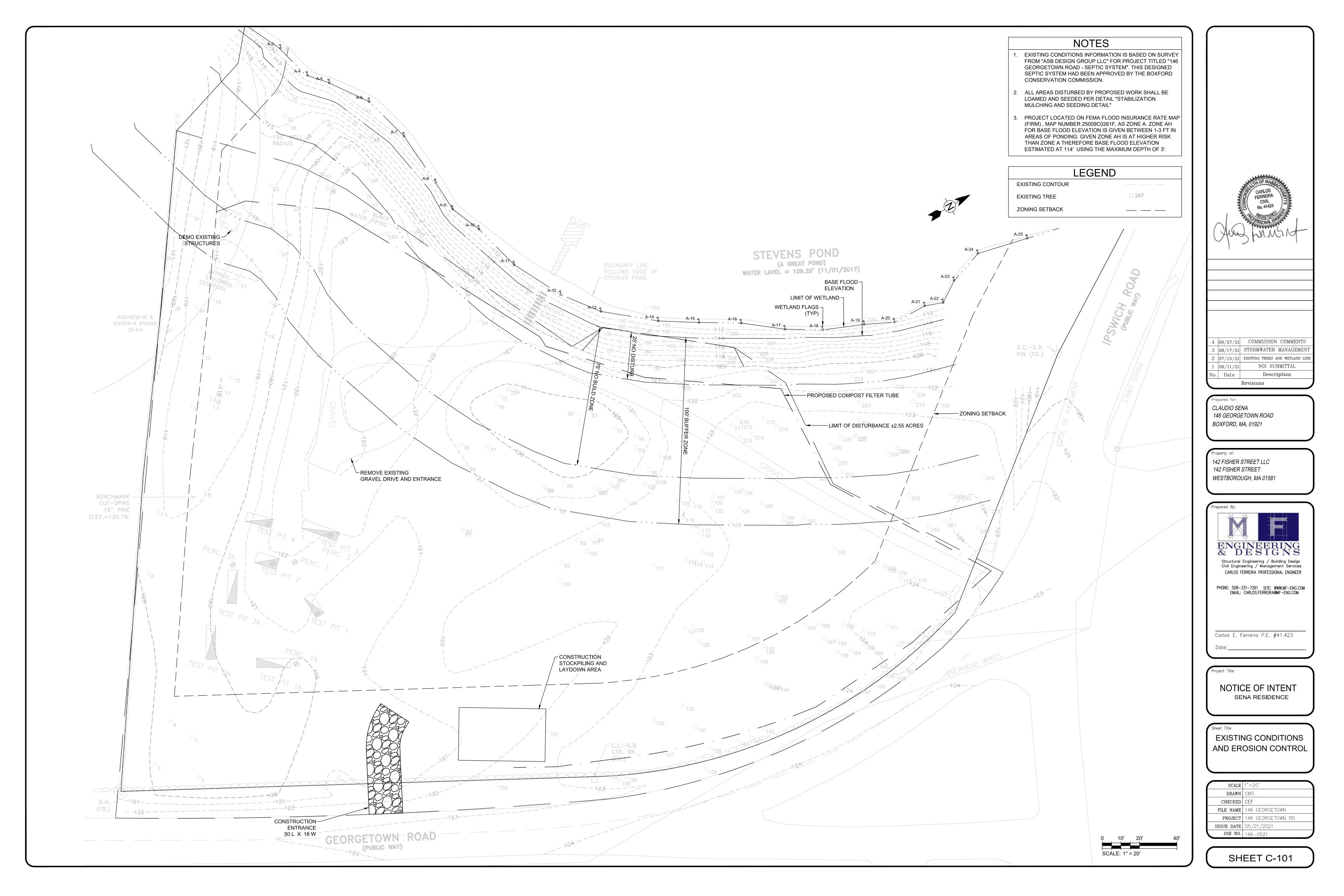
2. THE LOCATION OF EXISTING UNDERGROUND UTILITIES THE LOCATION OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY AND HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVES. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK, AND AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTORS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.

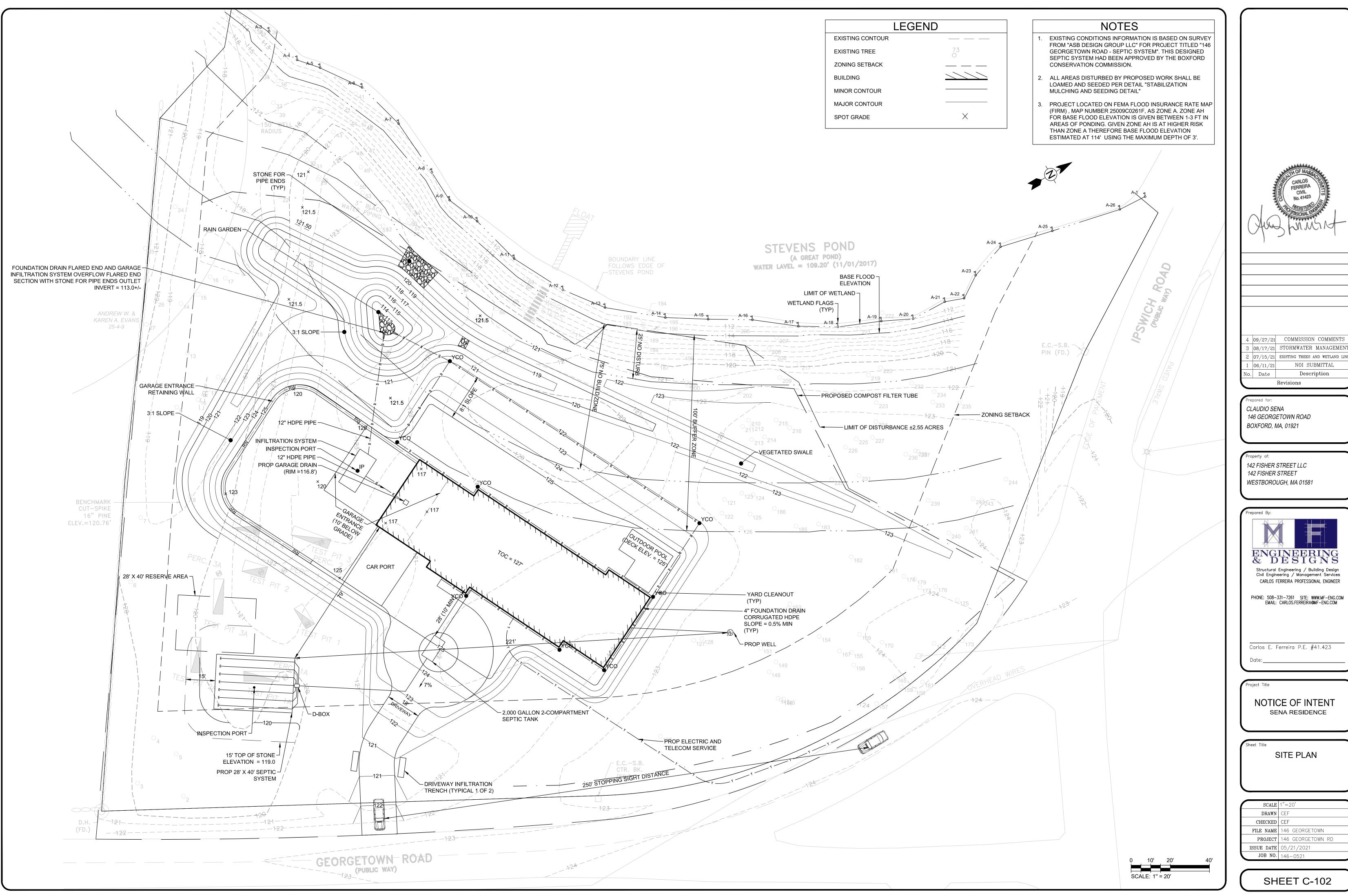
3. WHERE AN EXISTING UTILITY IS FOUND TO CONFLICT WHERE AN EXISTING UTILITY IS FOUND TO CONFLICT WITH THE PROPOSED WORK, THE LOCATION, ELEVATIONS, AND SIZE OF THE UTILITY SHALL BE ACCURATELY DETERMINED WITHOUT DELAY BY THE CONTRACTOR AND THE INFORMATION FURNISHED TO THE ENGINEER FOR RESOLUTION OF THE CONFLICT.

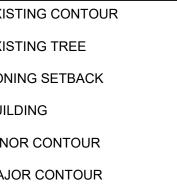
WORK.

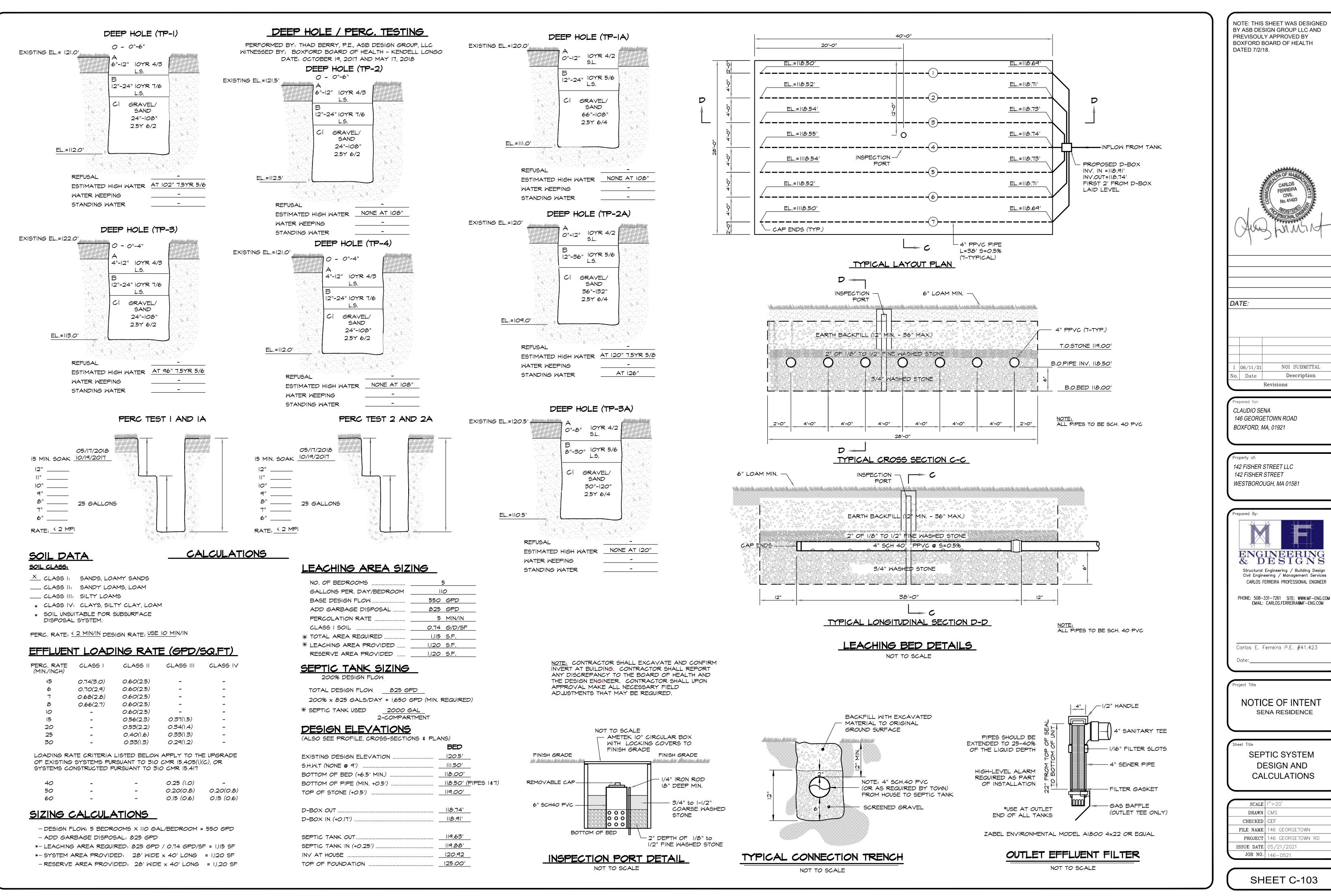
SYSTEM AS-BUILT REQUIREMENTS

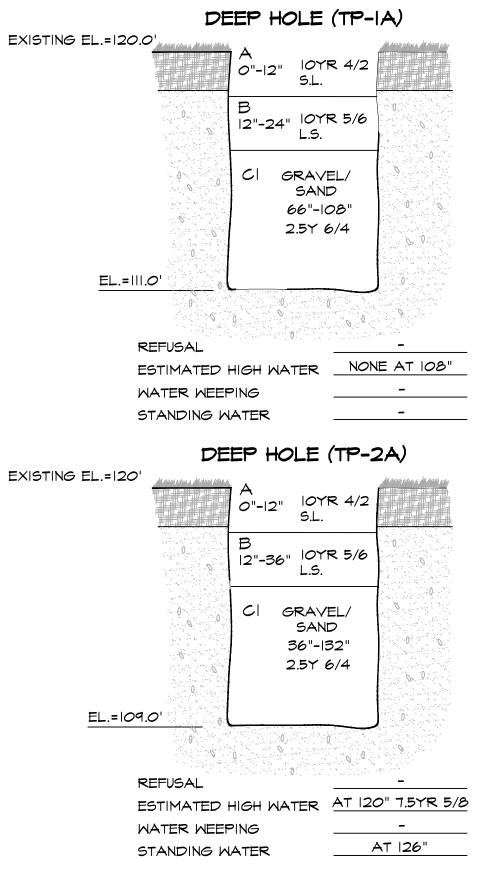
1. LEACH BEDDING A. CLEAN DOUBLE WASHED STONE SHALL BE FREE OF IRONS, FINES, DUST AND ORGANIC MATTER AS LAID. DOUBLE WASHED STONE SHALL CONFORM TO AASHO T-11-70. B. BOTTOM STONE IN LEACH SYSTEM SHALL BE 3/4" TO 1 1/2" DOUBLE WASHED STONE AS INDICATED IN NOTE 'A' ABOVE. C. TOP STONE IN LEACH SYSTEM SHALL BE 1/8" TO 3/8" DOUBLE WASHED STONE AS INDICATED

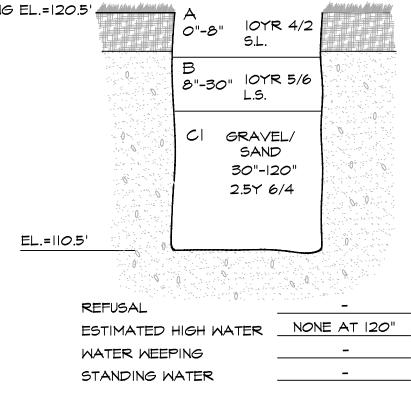

<u></u>	<u>PASS SIEVE</u> <u>EFFECTIVE</u>	
	4.75 MM	100
	0.30 MM	10%-10
	0.15 MM	0%-2
	0.075 MM	0%-5

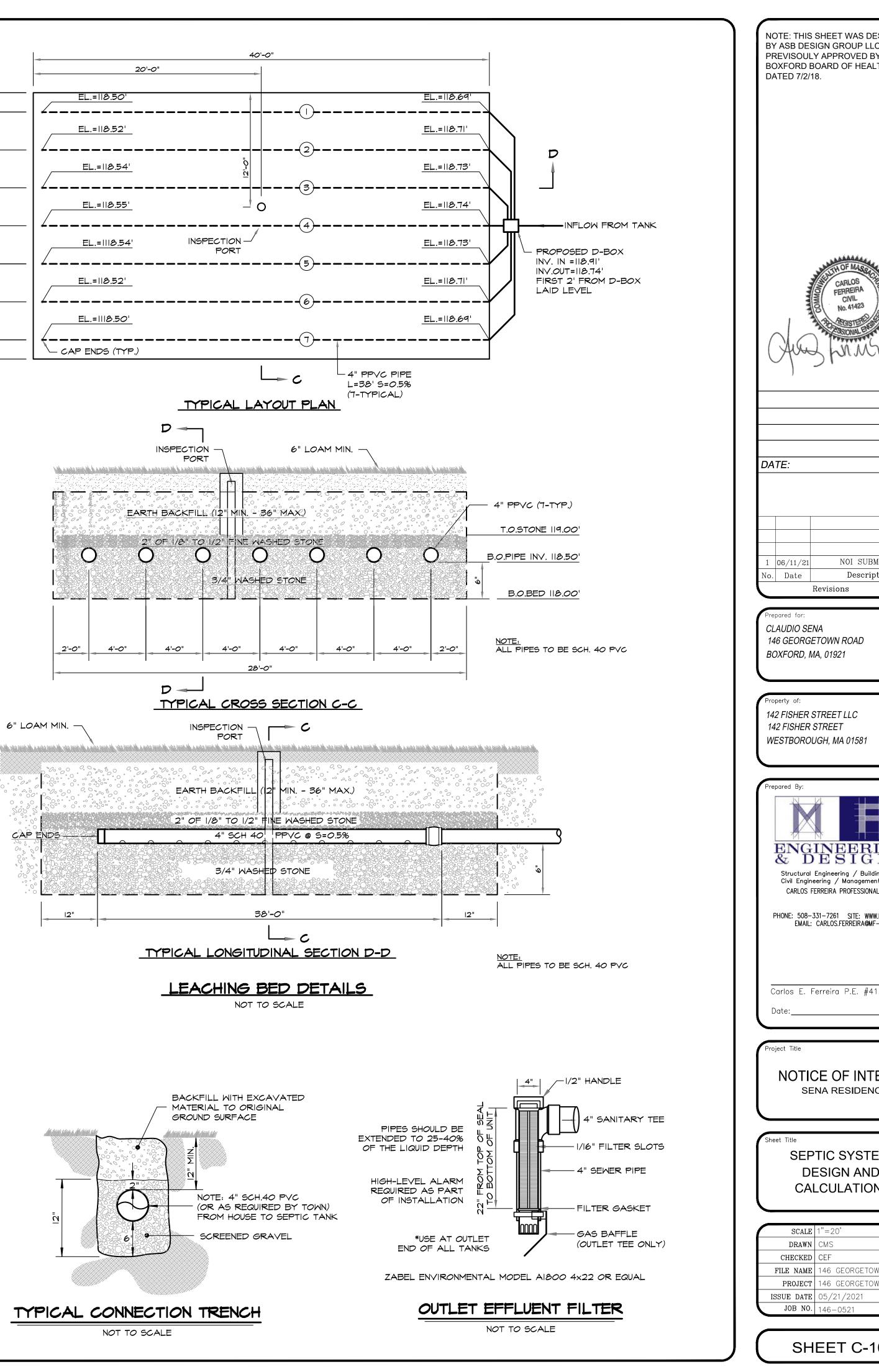

00% 20%

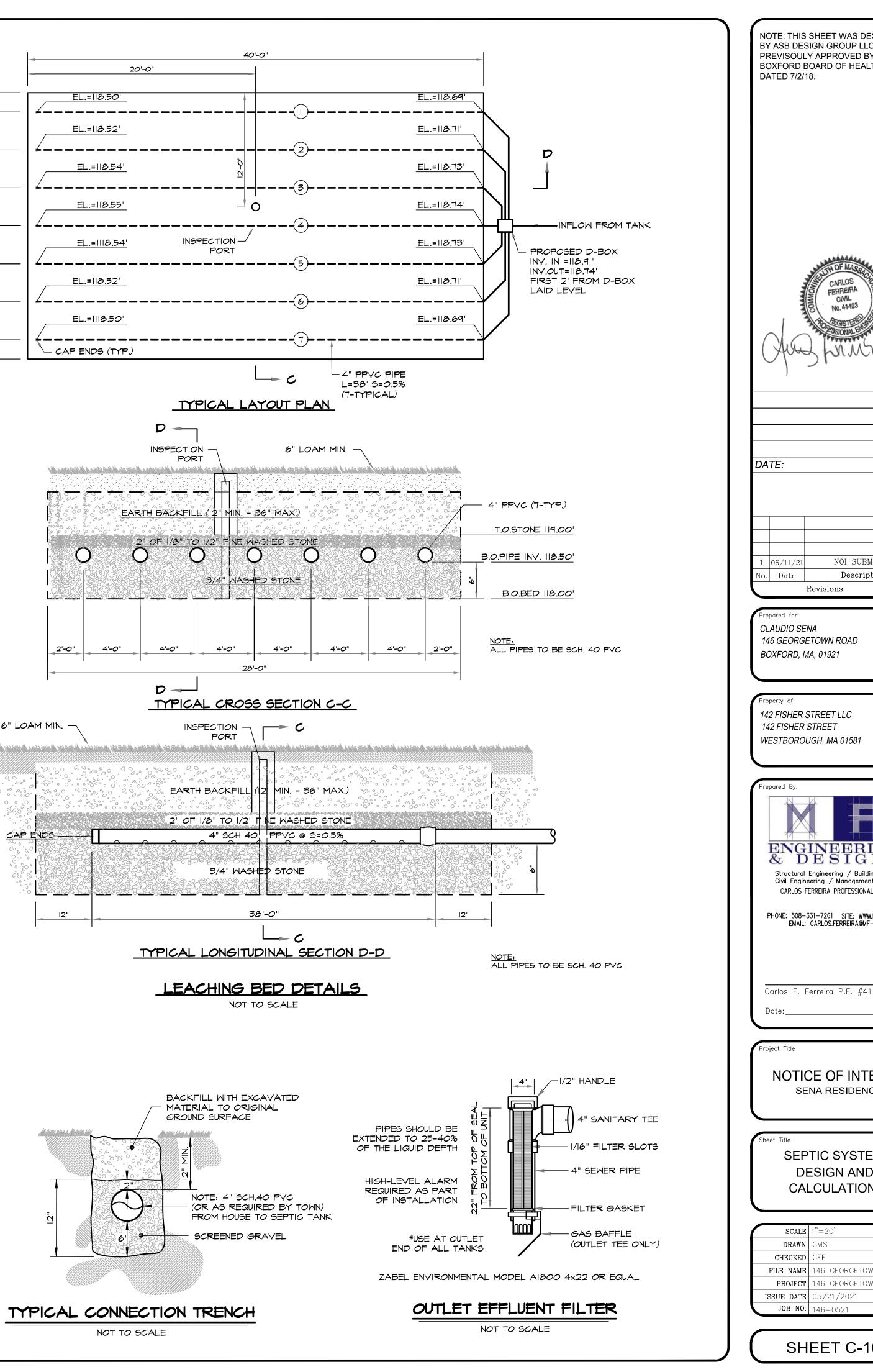

PRIOR TO PLACEMENT OF THE FILL, WHICH SHALL BE STOCKPILED AT THE EDGE OF THE EXCAVATION AND FILLED IN GRADUALLY, THE BOTTOM SURFACE OF THE EXCAVATION SHALL BE SCARIFIED AND RELATIVELY DRY. FILL SHALL NOT BE PLACED DURING RAIN OR SHOW STORMS. IF THE WATER TABLE ELEVATION IS ABOVE THE ELEVATION OF THE BOTTOM OF THE EXCAVATION, THE EXCAVATION SHALL **BE DEWATERED AS NECESSARY.**

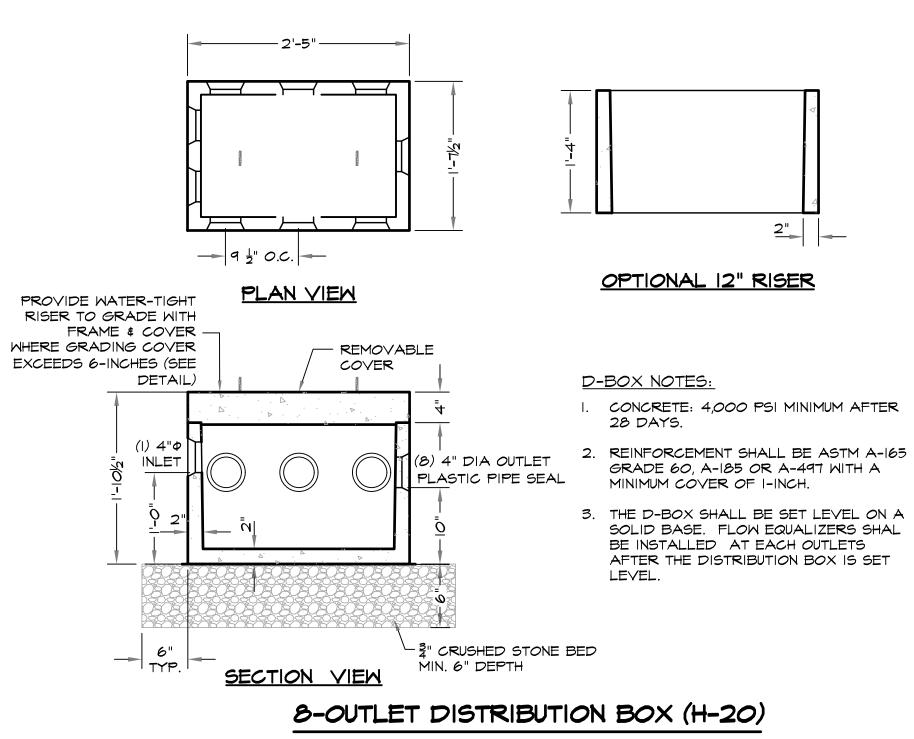

4. CONTRACTOR SHALL FIELD VERIFY AND LOCATE ALL CONTRACTOR SHALL FIELD VERIFY AND LOCATE ALL EXISTING UTILITIES AND REPORT ANY DISCREPANCIES TO THE ENGINEER PRIOR TO COMMENCING

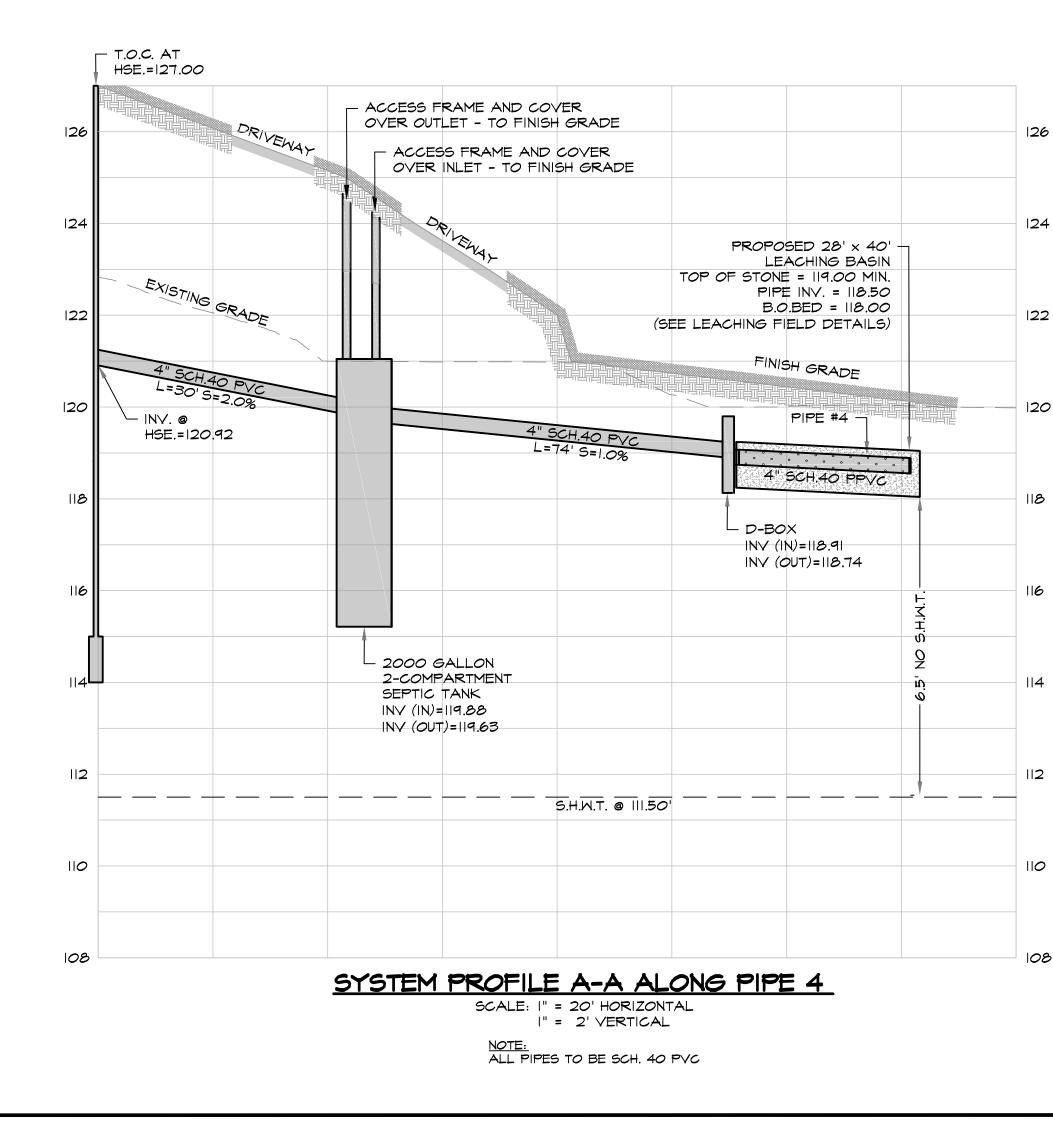

TH OF MASS
CARLOS FERREIRA
CIVIL No. 41423
THE TECISTER STATE
SSIONAL BY
And MWIND
_
409/27/21COMMISSION COMMENTS308/17/21STORMWATER MANAGEMENT
2 07/15/21 EXISTING TREES AND VETLAND LINE
1 06/11/21 NOI SUBMITTAL
No. Date Description Revisions
Prepared for:
CLAUDIO SENA 146 GEORGETOWN ROAD
BOXFORD, MA, 01921
Property of:
MF ENGINEERING
<i>MF ENGINEERING 142 FISHER STREET</i>
MF ENGINEERING
<i>MF ENGINEERING 142 FISHER STREET</i>
<i>MF ENGINEERING 142 FISHER STREET</i>
<i>MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581</i>
<i>MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581</i>
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By:
<i>MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581</i>
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING & DE SIGNS Structural Engineering / Building Design
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING & DE SIGNS
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING ENGINEERING Structural Engineering / Building Design CM Engineering / Building Design CM Engineering / Building Design CM Engineering / Management Services CARLOS FERRERA PROFESSIONAL ENGINEER
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING ENGINEERING Structural Engineering / Building Deeign Cvil Engineering / Building Deeign
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING ENGINEERING Structural Engineering / Building Design CM Engineering / Building Design CM Engineering / Building Design CM Engineering / Management Services CARLOS FERRERA PROFESSIONAL ENGINEER
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING ENGINEERING Structural Engineering / Building Design CM Engineering / Building Design CM Engineering / Building Design CM Engineering / Management Services CARLOS FERRERA PROFESSIONAL ENGINEER
<text><section-header><image/><text><text></text></text></section-header></text>
<text><text><image/><text><text><text></text></text></text></text></text>
<text><section-header><image/><text><text></text></text></section-header></text>
<text><text><image/><text><text><text></text></text></text></text></text>
<text><text><image/><text><text><text></text></text></text></text></text>
<text><text><image/><text><text><text><text></text></text></text></text></text></text>
<text><text><image/><text><text><text><text></text></text></text></text></text></text>
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Propored By: ENGINEERING CONCENTION CARLOS FERREIRA PROFESSIONAL ENGINEER CARLOS FERREIRA PROFESSIONAL ENGINEER PHOME: 508–331–7261 SITE: WWILMF-ENG.COM EMAI: CARLOS.FERREIRAMMF-ENG.COM
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Propared By: ENGINEERING CONCENTION CARLOS FERREIRA PROFESSIONAL ENGINEER CARLOS FERREIRA PROFESSIONAL ENGINEER PHOME: 508–331–7261 SITE: WWILMF-ENG.COM EMAI: CARLOS.FERREIRAMMF-ENG.COM
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Propared By: ENGINEERING CONCENTION CARLOS FERREIRA PROFESSIONAL ENGINEER CARLOS FERREIRA PROFESSIONAL ENGINEER PHOME: 508–331–7261 SITE: WWILMF-ENG.COM EMAI: CARLOS.FERREIRAMMF-ENG.COM
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By:
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Propared By:
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By:
AF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By:
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By:
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: Prepared By: Project Title NOTICE OF INTENT SENA RESIDENCE Short Title COVER SHEET Street Title COVER SHEET Street Title Street Title COVER SHEET
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: Prepared By: Project This NOTICE OF INTENT Serva RESIDENCE Project This Dote: Short This COVER SHEET BLALE 1"=20' DRANT CMS CHIRCKER CMS
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Propored By:
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING Structurel Engineering / Building Design CME Engineering / Management Services CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: 509–331–7281 STE: WHENEF-ENGLOOM EMAL: CARLOS FERRERAME-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: 509–331–7281 STE: WHENEF-ENGLOOM EMAL: CARLOS FERRERAME-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM EMAL: CARLOS FERRERAME-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM STE: STRUE STRUE THIS STRUE THIS STRUE THE STRUE THE STRUE THE STRUE THE STRUE THE SOB STE: STRUE THE STR
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Propered By:
MF ENGINEERING 142 FISHER STREET WESTBOROUGH, MA 01581 Prepared By: ENGINEERING Structurel Engineering / Building Design CME Engineering / Management Services CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: 509–331–7281 STE: WHENEF-ENGLOOM EMAL: CARLOS FERRERAME-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: 509–331–7281 STE: WHENEF-ENGLOOM EMAL: CARLOS FERRERAME-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM EMAL: CARLOS FERRERAME-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM CARLOS FERRERA PROFESSIONAL ENGINEER PHONE: SOB-331–7281 STE: WHENEF-ENGLOOM STE: STRUE STRUE THIS STRUE THIS STRUE THE STRUE THE STRUE THE STRUE THE STRUE THE SOB STE: STRUE THE STR

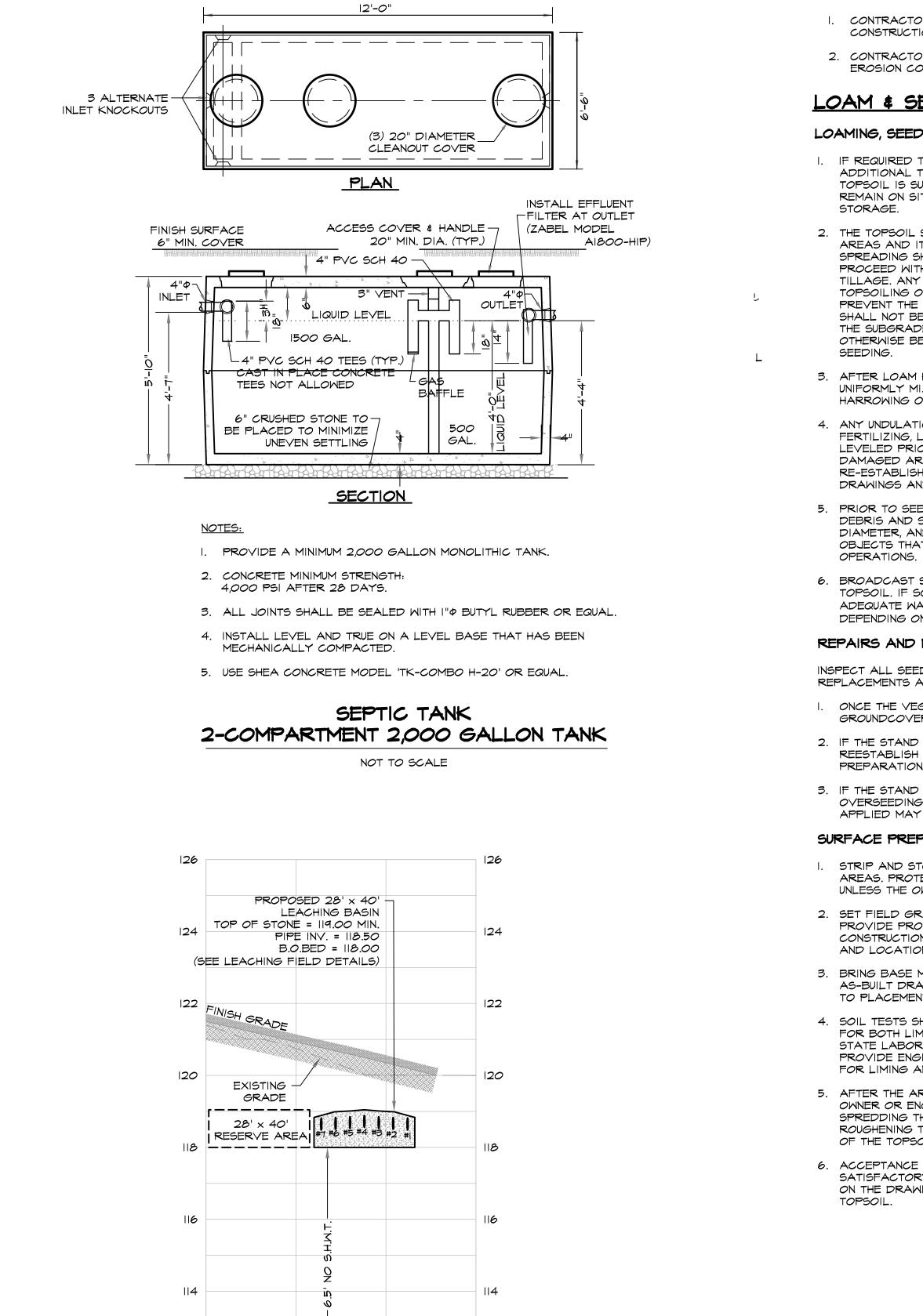












NOT TO SCALE

<u>GENERAL NOTES</u>

SYSTEM CROSS SECTION B-B SCALE: | = 20' HORIZONTAL I" = 2' VERTICAL

S.H.W.T. @ 111.50'

110

108

112

||O

108

 $\frac{NOTE:}{ALL PIPES TO BE SCH. 40 PVC}$

I. CONTRACTOR SHALL INSTALL EROSION CONTROL SOCK PRIOR TO CONSTRUCTION.

2. CONTRACTOR SHALL STOCKPILE ALL LOAM AND SURROUND AREA WITH EROSION CONTROL SOCK.

LOAM & SEEDING NOTES

LOAMING, SEEDING AND FERTILIZING

I. IF REQUIRED THE CONTRACTOR SHALL FURNISH ALL TOPSOIL OR ADDITIONAL TOPSOIL NEEDED TO COMPLETE THE JOB. IF THE EXISTING TOPSOIL IS SUFFICIENT TO COMPLETE THE JOB, ANY EXCESS TOPSOIL WILL REMAIN ON SITE. AN AREA WILL BE PROVIDED ON SITE FOR FINAL

2. THE TOPSOIL SHALL BE UNIFORMLY DISTRIBUTED ON THE DESIGNATED AREAS AND IT SHALL BE A MINIMUM DEPTH OF SIX INCHES AFTER FIRMING. SPREADING SHALL BE PERFORMED IN SUCH A MANNER THAT SEEDING CAN PROCEED WITH A MINIMUM OF ADDITIONAL SOIL PREPARATION AND TILLAGE. ANY IRREGULARITIES IN THE SURFACE RESULTING FROM TOPSOILING OR OTHER OPERATIONS SHALL BE CORRECTED IN ORDER TO PREVENT THE FORMATION OF DEPRESSIONS OR WATER POCKETS. TOPSOIL SHALL NOT BE PLACED WHILE IN A FROZEN OR MUDDY CONDITION, WHEN THE SUBGRADE IS EXCESSIVLY WET, OR IN A CONDITION THAT MAY OTHERWISE BE DETRIMENTAL TO PROPER GRADING OR PROPOSED

3. AFTER LOAM HAS BEEN PLACED, LIME AND FERTILIZER SHALL BE UNIFORMLY MIXED INTO THE TOP FOUR INCHES OF SOIL BY DISCING, HARROWING OR USING OTHER APPROVED METHODS.

4. ANY UNDULATIONS OR IRREGULARITIES IN THE SURFACE RESULTING FROM FERTILIZING, LIMING, SURFACE ROUGHINING OR OTHER CAUSES SHALL BE LEVELED PRIOR TO SEEDING. FLOODED, WASHED-OUT OR OTHERWISE DAMAGED AREAS SHALL BE RECONSTRUCTED AND ALL GRADES RE-ESTABLISHED BY THE CONTRACTOR IN ACCORDANCE WITH THE DRAWINGS AND/ OR OTHER APPLICABLE SPECIFICATIONS.

5. PRIOR TO SEEDING THE SURFACE SHALL BE CLEARED OF ALL TRASH, DEBRIS AND STONES LARGER THAN ONE AND ONE-HALF INCHES IN DIAMETER, AND OF ALL ROOTS, BRUSH, WIRE, GRADE STAKES AND OTHER OBJECTS THAT WOULD INTERFERE WITH PLANTING OR MAINTENANCE

6. BROADCAST SEED AND MULCH. PLACE STRAW AND ANCHOR IT TO TOPSOIL. IF SOIL MOISTURE IS DEFICIENT, SUPPLY NEW SEEDLINGS WITH ADEQUATE WATER FOR PLANT GROWTH. (1/2"-1" EVERY 3-4 DAYS DEPENDING ON SOIL TEXTURE) UNTIL THEY ARE FIRMLY ESTABLISHED.

REPAIRS AND MAINTENANCE

INSPECT ALL SEEDED AREAS FOR FAILURES AND MAKE NECESSARY REPAIRS, REPLACEMENTS AND RESEEDINGS WITHIN THE PLANTING SEASON.

I. ONCE THE VEGETATION IS ESTABLISHED, THE SITE SHALL HAVE 95% GROUNDCOVER TO BE CONSIDERED ADEQUATELY STABILIZED.

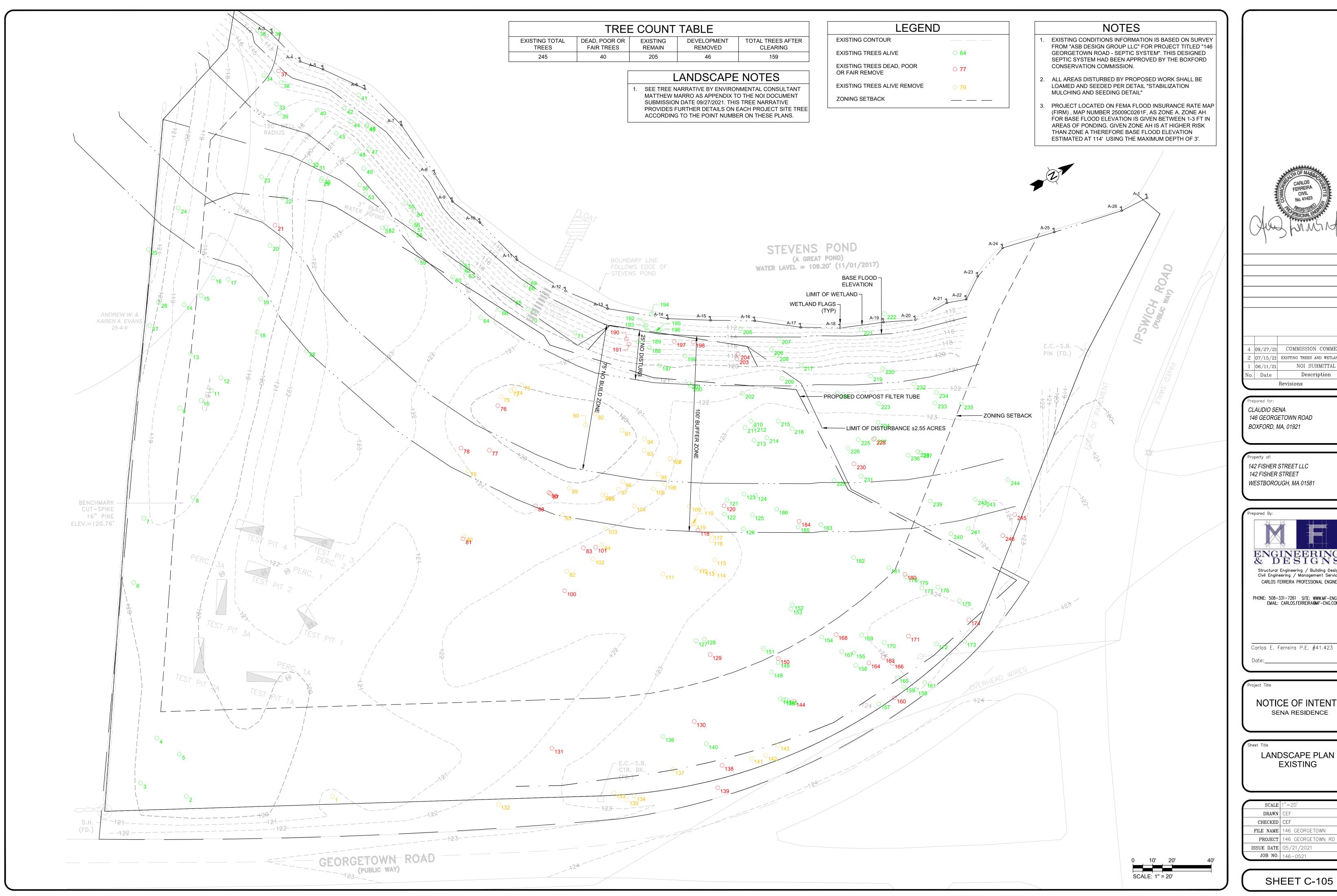
2. IF THE STAND PROVIDES LESS THAN 40% GROUND COVERAGE, REESTABLISH FOLLOWING ORIGINAL LIME, FERTILIZER, SEEDBED PREPARATION AND SEEDING RECOMMENDATIONS.

3. IF THE STAND PROVIDES BETWEEN 40% AND 94% GROUND COVER AGE, OVERSEEDING AND FERTILIZING USING HALF OF THE RATES ORIGINALLY APPLIED MAY BE NECESSARY.

SURFACE PREPARATION

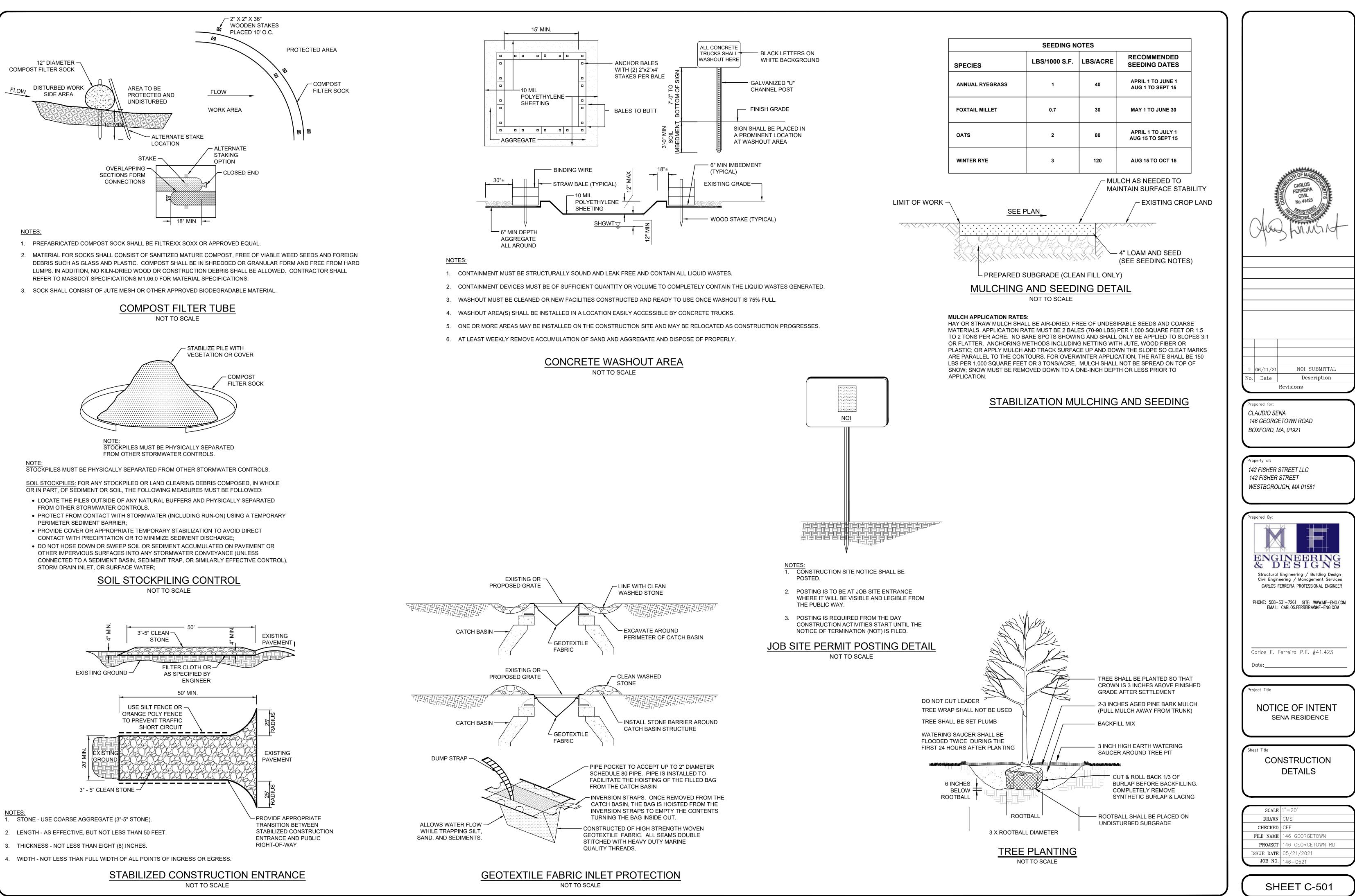
I. STRIP AND STOCKPILE ALL EXISTING LOAM FROM PROPOSED WORK AREAS. PROTECT LOAM FROM EROSION. ALL LOAM WILL REMAIN ON SITE UNLESS THE OWNER APPROVES OF OFF SITE REMOVAL.

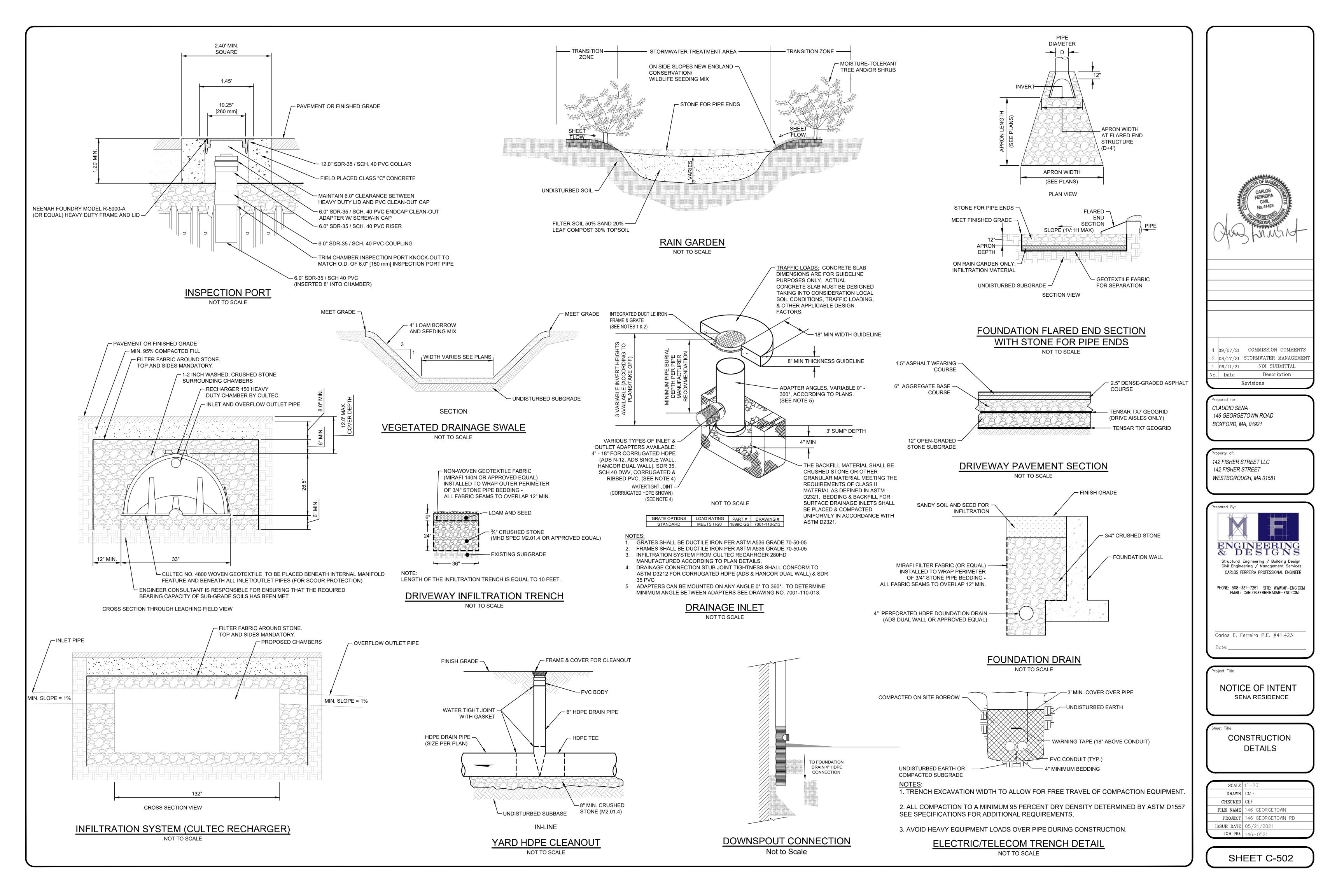
2. SET FIELD GRADES IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. PROVIDE PROPER SURVEY CONTROL AND MAINTAIN THROUGHOUT CONSTRUCTION. PROVIDE ENGINEER WITH COPIES OF ALL SURVEY NOTES AND LOCATIONS OF BOTH VERTICAL AND HORIZONTAL CONTROL.


3. BRING BASE MATERIAL TO FINISH GRADE. PROVIDE ENGINEER WITH AS-BUILT DRAWINGS SHOWING FINISH ELEVATIONS AND CONTOURS PRIOR TO PLACEMENT OF LOAM.

4. SOIL TESTS SHALL BE MADE TO DETERMINE THE EXACT REQUIREMENTS FOR BOTH LIME AND FERTILIZER. SOIL TESTS SHALL BE CONDUCTED BY A STATE LABORATORY OR RECOGNIZED COMMERCIAL LABORATORY. PROVIDE ENGINEER WITH COPY OF TEST RESULTS AND RECOMENDATIONS FOR LIMING AND FERTILIZING.

5. AFTER THE AREAS TO BE TOPSOILED HAVE BEEN APPROVED BY THE OWNER OR ENGINEER, AND IMMEDIATLY PRIOR TO DUMPING AND SPREDDING THE TOPSOIL, THE SUBGRADE SHALL BE LOOSENED BY ROUGHENING TO THE DEPTH OF AT LEAST TWO INCHES TO PERMIT BONDING OF THE TOPSOIL TO THE SUBSOIL AND TO INCORPORATE THE LIME.


6. ACCEPTANCE SHALL BE GIVEN BY THE OWNER OR ENGINEER UPON SATISFACTORY COMPLETION OF EACH SECTION OR AREA AS INDICATED ON THE DRAWINGS OR AS OTHERWISE SPECIFIED BEFORE PLACEMENT OF


NOTE: THIS SHEET WAS DESIGNED BY ASB DESIGN GROUP LLC AND	
BY ASB DESIGN GROUP LLC AND	
PREVISOULY APPROVED BY	
BOXFORD BOARD OF HEALTH DATED 7/2/18.	
DATED 7/2/18.	
NAMAAAAA	
WITH OF MASSAGE	
CARLOS FERREIRA	
No. 41423	
THE TEGISTER STATE	
CI CO THINK I	
(your principal	
	1
	-
	_
	1
	1
1	
1	
	-
	-
	-
1 06/11/21 NOI SUBMITTAL	1
No. Date Description	
Revisions	J
Prepared for:	
CLAUDIO SENA	
146 GEORGETOWN ROAD	
BOXFORD, MA, 01921	
	J
Property of:	
142 FISHER STREET LLC	
142 FISHER STREET	
WESTBOROUGH, MA 01581	
	J
Prepared By:	
ENGINEERING & DESIGNS	
ENGINEERING & DESIGNS Structural Engineering / Building Design	
Structural Engineering / Building Design Civil Engineering / Management Services	
Structural Engineering / Building Design	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER	
Structural Engineering / Building Design Civil Engineering / Management Services	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date: Project Title NOTICE OF INTENT	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508-331-7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date: Project Title NOTICE OF INTENT	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date: Project Title NOTICE OF INTENT	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date: Project Title NOTICE OF INTENT	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date: Project Title NOTICE OF INTENT SENA RESIDENCE	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRAØMF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF–ENG.COM EMAIL: CARLOS.FERREIRA@MF–ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRAØMF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF–ENG.COM EMAIL: CARLOS.FERREIRA@MF–ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF–ENG.COM EMAIL: CARLOS.FERREIRA@MF–ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@WF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date: Project Title NOTICE OF INTENT SENA RESIDENCE Sheet Title SEPTIC SYSTEM PROFILES AND DETAILS Stale 1"=20' DRAWN CMS CHECKED CEF FILE NAME 146 GEORGETOWN PROJECT 146 GEORGETOWN RD	
Structural Engineering / Building Design Civil Engineering / Management Services CARLOS FERREIRA PROFESSIONAL ENGINEER PHONE: 508–331–7261 SITE: WWW.MF-ENG.COM EMAIL: CARLOS.FERREIRA@MF-ENG.COM Carlos E. Ferreira P.E. #41.423 Date:	

CARLOS FEIREIRA CIVIL No. 41423 SOUNAL HINTOF MASCO FEIREIRA CIVIL No. 41423 SOUNAL HINTOF MASCO FEIREIRA SOUNAL HINTOF FEIREIRA SOUNAL HINTOF FEIREIRA S
4 09/27/21 COMMISSION COMMENTS 2 07/15/21 EXISTING TREES AND WETLAND LINE 1 06/11/21 NOI SUBMITTAL No. Date Description Revisions
Property of: 142 FISHER STREET LLC 142 FISHER STREET WESTBOROUGH, MA 01581
Carlos E. Ferreira P.E. #41.423 Date:
Project Title NOTICE OF INTENT SENA RESIDENCE
Sheet Title LANDSCAPE PLAN EXISTING
SCALE 1"=20'
DRAWN CEF CHECKED CEF
FILE NAME146GEORGETOWNPROJECT146GEORGETOWNRDISSUE DATE05/21/2021
JOB NO. 146-0521
110 0021

