CARRIAGEHOUSE CONSULTING, INC.

Electronic Transmittal September 7, 2022

Bureau of Waste Site Cleanup Massachusetts Department of Environmental Protection Northeast Regional Office 205B Lowell Street Wilmington, MA 01887

Re: Immediate Response Action Plan Tractor Trailer Vehicle Accident Site Ipswich Road (Between Porter Road and Mulberry Lane) Boxford, MA 01906 RTN 3-37579

To Whom It May Concern:

Enclosed, please find the Immediate Response Action Plan (the Report) which outlines the response action activities planned and being implemented at the above-listed location along Ipswich Road in Boxford, Massachusetts (the site) in response to the conditions that gave rise to Release Tracking Number (RTN) 3-37579.

This Report has been prepared by CarriageHouse Consulting, Inc. on behalf of P E N Fuel Co., Inc. (PEN Fuel Co.) for submittal to the Massachusetts Department of Environmental Protection as an electronic attachment to Transmittal Form BWSC-105 under RTN 3-37579 through the eDEP Program. As indicated in the Report, the party overseeing response actions associated with this submittal is Mr. Nasser Abu-Eid of PEN Fuel Co. and future correspondence should be directed to his attention at 18 Lark Avenue, Saugus, MA 01906; he may also be reached by telephone at (781) 246-0201.

As indicated in the enclosed Report, PEN Fuel Co. has implemented initial response actions at this site under the provisions set forth in 310 CMR 40.0410 for RTN 3-37579 as the result of conditions arising from a vehicle accident.

Please do not hesitate to contact us with any questions or comments at (508) 315-3146.

Sincerely, CarriageHouse Consulting, Inc.

McKayla M. Olig Environmental Scientist

cc: PEN Fuel Co., *(electronic)*

Brian D. Moore, P.G., L.S.P. President

		Ma	ssDEP Home Contac	t Privacy Policy
MassDEP's Online Filing System My eDEP Forms My Profile Help Notifications			Username:BRIANDM Nickname: LS	OORE SP8435 LOG OFF
Receipt]
Summary/Receipt	<u>Forms</u>	Attach Files	Signature	Receipt
Your submission is complete. Thank you for using DE system. You can select "My eDEP" to see a list of you	P's online repo r transactions	orting	print receip	
DEP Transaction ID: 1426531 Date and Time Submitted: 9/7/2022 6:10:51 PM Other Email :				
Form Name: BWSC105 Immediate Response Action	Transmittal Fo	orm		

RTN: 3-37579 Location: IN FRONT OF 461 IPSWICH ROAD Address: 461 IPSWICH ROAD, BOXFORD, 019210000

Person Making Submittal PEN FUEL COMPANY INC NASSER ABU-EID 18 LARK AVE SAUGUS, MA 019060000

LSP LSP #: 8435 LSP Name: BRIAN D MOORE

Person Making Certification PEN FUEL COMPANY INC Nasser Abu-Eid

Ancillary Document Uploaded/Mailed BWSC-105 Q.B02 - IRA Plan - Uploaded (2022 09 07 IRA Plan.pdf)

My eDEP

MassDEP Home | Contact | Privacy Policy

MassDEP's Online Filing System ver.15.22.2.0© 07/15/2022 MassDEP

IMMEDIATE RESPONSE ACTION PLAN

SEPTEMBER 2022

TRACTOR TRAILER VEHICLE ACCIDENT SITE IPSWICH ROAD (BETWEEN PORTER ROAD AND MULBERRY LANE) BOXFORD MASSACHUSETTS 01921 RTN 3-37579

Prepared for: Mr. Nasser Abu-Eid P E N Fuel Co., Inc. 18 Lark Avenue Saugus, MA 01906 (781) 246-0201 ext. 202

Prepared by: CARRIAGEHOUSE CONSULTING, INC. 8 Pleasant Street

South Natick, MA 01760 (508) 315-3146

Supervising Professional: Brian D. Moore P.G., L.S.P.

CHCI Project #: MA220701

TRACTOR TRAILER VEHICLE ACCIDENT SITE. IPSWICH ROAD (BETWEEN PORTER ROAD AND MULBERRY LANE) BOXFORD MASSACHUSETTS 01921 RTN 3-37579

TABLE OF CONTENTS

TABLE	E OF CONTENTS
INDEX	i OF FIGURES
INDEX	i OF TABLESi
LIST O	PF APPENDICESi
1.0	INTRODUCTION AND OBJECTIVE OF REPORT
2.0	GENERAL SITE INFORMATION. 1 2.1 Property and Study Area Description 1 2.2 Surrounding Area and Potential Receptors. 2 2.2.1 Schools and Institutions. 2 2.2.2 Surface Waters and Wetlands. 2 2.2.3 Water Supply Protection Areas. 2 2.2.4 Utilities and Subsurface Structure 2 2.2.5 Habitats and Natural Resource Areas 2 2.3 Entity Conducting Immediate Response Action 2 2.4 Conditions Warranting IRA Activities 2
3.0	IMMEDIATE RESPONSE ACTION ACTIVITIES 3 3.1 Emergency Response Actions 3.2 Selective Soil Excavation Activities 3.3 Soil Sample Collection and Analyses 3.4 Waste Management 3.5 Public Involvement
4.0	FURTHER IRA ACTIVITIES 4.1 Groundwater Monitoring Well Installation 4.2 4.2 Groundwater Monitoring and Sampling 4.3 4.3 Private Drinking Water Supply Well Sampling 6 4.4 Resource Area Protection and Site Restoration Activities 6 4.5 Characterization and Management of Waste 6 4.6 Limitations of IRA 7
5.0	FINDINGS AND CONCLUSIONS
7.0	LIMITATIONS AND QUALITY ASSURANCE/CONTROL

TRACTOR TRAILER VEHICLE ACCIDENT SITE. IPSWICH ROAD (BETWEEN PORTER ROAD AND MULBERRY LANE) BOXFORD MASSACHUSETTS 01921 RTN 3-37579

INDEX OF FIGURES

- Figure 1 Locus Plan
- Figure 2 Site Plan
- Figure 3 Area Plan
- Figure 4 Environmental Resources Plan
- Figure 5 Soil Sample Location Plan

INDEX OF TABLES

- Table 1
 Soil Sample Analytical Data Summary Volatile Organic Compounds and Volatile Petroleum Hydrocarbon Fractions
- Table 2- Soil Sample Analytical Data Summary Polynuclear Aromatic Hydrocarbons and
Extractable Petroleum Hydrocarbon Fractions
- Table 3
 Soil Sample Analytical Data Summary Perfluoroalkyl and Polyfluoroalkyl Substances

LIST OF APPENDICES

Appendix A - Public Involvement and Participation Correspondences

Appendix B - Soil Sample Analytical Data

This Immediate Response Action (IRA) Plan (the Report) has been prepared by CarriageHouse Consulting, Inc. (CHCI) on behalf of P E N Fuel Co., Inc. (PEN Fuel Co.) for response action activities initiated to address conditions identified at the location of a tractor trailer vehicle accident site within the Ipswich Road right-of-way, between Porter Road and Mulberry Lane, in Boxford, Massachusetts (the site).

The objectives of this Report are to identify the nature and magnitude of potential oil and/or hazardous material (OHM) at this site where IRA activities were initiated in response to conditions observed during a vehicle accident involving a tractor trailer carrying gasoline, and to provide the Massachusetts Department of Environmental Protection (the Department) with the information required by the provisions set forth in 310 CMR 40.0410 of the Massachusetts Contingency Plan (MCP). This IRA Plan is also intended to confirm the response actions approved by the Department and further planned for this site since initial notification, as well as additional actions being contemplated for this location in the future in a format consistent with 310 CMR 40.0424.

2.0 GENERAL SITE INFORMATION

The subsections which follow present a brief description of the subject property and study area, the surrounding area and potential receptors, and the specific conditions which resulted in both the verbal notification provided to the Department and IRA activities proposed for this location. This information is presented herein pursuant to 310 CMR 40.0424(1)(a), (b), and (d), while further details on site monitoring activities and additional actions being contemplated and proposed for this site under this IRA are presented in Section 3.0.

2.1 Property and Study Area Description

The subject property is a wooded section of the roadside, along the southern side of Ipswich Road, between Mulberry Land and Porter Road, owned and operated by The Town of Boxford and located in a predominantly residential portion of Boxford, Massachusetts.

A Locus Plan depicting the location of the subject site and topographic features in the vicinity thereof was prepared using the United States Geological Survey 7.5-minute series map for the Lawrence, Massachusetts quadrangle (1987) is included as Figure 1. As noted on Figure 1, the subject property exists at an elevation of approximately 47 meters (approximately 154 feet) above mean sea level. The geographic coordinates for locating the subject property are as follows:

- 42° 41' 53" North latitude by 71° 02' 41" West longitude; and
- 4,729,312 meters North by 332,512 meters East on Universal Transverse Mercator Grid Zone 19.

A Site Plan has also been prepared and is included herein as Figure 2 to depict the approximate boundaries of the tractor trailer vehicle accident site, and an Area Plan has been prepared as Figure 3 to depict the surrounding study area, including open space and surface water nearby. These figures have been prepared to show the estimated extent of the release location, the proximity and layout of surrounding properties, the general arrangement and layout of relevant features, and potential sensitive receptors in the site area as gathered through municipal and state research conducted to-date.

The topography of the subject site area is of low to moderate relief, with surface elevations generally decreasing in the northwesterly direction. Wooded and/or grassy areas are situated along the southern and norther edges of the Ipswich Road right-of-way. The surrounding property uses include agricultural, open space, and residential development.

2.2 Surrounding Area and Potential Receptors

Information obtained through the Massachusetts Geographic Information System was used to prepare an Environmental Resources Plan, which is included herein as Figure 4 to assist with depicting information about potential receptors in the immediate vicinity of the subject property in the following subsections.

2.2.1 Schools and Institutions

No schools, institutions, day care centers, or hospitals are known to exist within 1,000 feet of this site.

2.2.2 Surface Waters and Wetlands

The site is located within a mapped wooded marsh and wetland area which extends directly north and south of the disposal site on both sides of Ipswich Road. This wetland area is believed to be subject to the jurisdiction of the Town of Boxford Wetlands Protection Bylaw and the Wetlands Protection Act (WPA). There is a mapped intermittent stream immediately east of the accident site, which is directed through a 24-inch reinforced concrete pipe (RCP) culvert beneath Ipswich Road and flows south to north perpendicular to the roadway. No other vernal pools, ponds, lakes, streams, reservoirs, wetlands, or surface water bodies are known to exist within 500 feet of the subject site.

2.2.3 Water Supply Protection Areas

As shown on Figures 3 and 4, the subject site is located in an area designated as a Department-approved Zone II Wellhead Protection Area. No Interim Zone II Wellhead Protection Areas, Class A Surface Water Bodies, or Zone A for Class A Surface Water Bodies are known to exist within 500 feet of the site, but at least three (3) private water supply wells are known to be located within 500 feet of the subject site. Accordingly, the site is situated within an area viewed to be subject to Current Drinking Water Source Area (CDWSA) designation pursuant to the definition set forth in 310 CMR 40.0006.

The entire study area is serviced by private water supply wells, and no municipal public water supply infrastructure exists in this portion of Boxford. No aquifer protection districts, municipal overlay districts, or Potentially Productive Aquifers (PPAs) are known to have been mapped or underlie the site or study area. Accordingly, the site is situated within an area also viewed to be subject to Potential Drinking Water Source Area (PDWSA) designation pursuant to the definition set forth in 310 CMR 40.0006.

2.2.4 Utilities and Subsurface Structure

Subsurface utilities are presumed to exist near the site, but are currently believed to be limited to stormwater and surface water subsurface conduit, and potentially natural gas and electric service lines. The Town of Boxford does not maintain a centralized sewage treatment facility, indicating that properties proximate to the site are likely serviced by private septic systems. Other subsurface utilities in the site area may include telecommunication lines and other utility conduits. Basements are likely present at all residential properties situated in the study area proximate to the site.

2.2.5 Habitats and Natural Resource Areas

There are two (2) Protected Open Spaces are located within 1,000 feet of the property. The first is located directly east of the disposal site while the other is located in the general south-southwest direction of the site. No Natural Heritage and Endangered Species Program, Estimated Habitat of Rare Wildlife, Rare Species are located within 1,000 feet of the property.

2

2.3 Entity Conducting Immediate Response Action

The entity responsible for conducting response actions associated with RTN 3-37579 is P E N Fuel Co., Inc. as the owner of the tractor trailer and trailer involved in the vehicle accident. Correspondence to their attention should be addressed to Mr. Nasser Abu-Eid of PEN Fuel Co. c/o 18 Lark Avenue in Saugus, MA 01906. He may also be reached by telephone at (781) 246-0201. PEN Fuel Co.'s relationship to the site is that of a Potentially Responsible Party (PRP).

2.4 Conditions Warranting IRA Activities

On the morning of Saturday July 9, 2022, a PEN Fuel Co. tractor trailer traveling west on Ipswich Road in Boxford, Massachusetts rolled over and hit a utility pole on the southern side of the Ipswich Road right-ofway. The vehicle accident occurred at approximately 6:45 am, as witnessed by a Town of Boxford police officer. The tractor trailer was hauling a full load of approximately 5,800 gallons of gasoline.

Notification of these conditions was provided to the Department at 07:37 am on July 9, 2022 by the Town of Boxford Fire Department and resulted in the assignment of RTN 3-37579. In addition, a field Notice of Responsibility (NOR) was also issued for the release of an unknown quantity of gasoline at the tractor trailer accident site by Department personnel Stephen Ross on July 9, 2022.

Preliminary response actions directed by the Town of Boxford Fire Department at the tractor trailer accident site included the deployment of approximately 30 gallons of aqueous film forming foam (AFFF). Town of Boxford Fire Department reportedly used less than 30 gallons of foam from the pumper's foam compartment. Fire Department records indicate it likely was FireAde 2000 AFFF manufactured by Fire Service Plus, Inc. of Fayetteville, Georgia circa 2009. The Lot number (#L172009-SA-F6) was provided to the manufacturer and they confirmed that the concentrate likely contained approximately 1 percent (%) C8 fluorinated surfactant.

Following the removal of the tractor trailer, preliminary inspections of the vehicle accident site indicated that neither gasoline from the trailer nor diesel fuel from the saddle tanks was released to the environment. The inspection did confirm a relatively small quantity of motor oil and grease from the tractor trailer engine block had been released to the ground surface in a localized area near the base of the damaged telephone pole.

Reproductions of the Release Notification Form (RNF) submitted to the Department on September 2, 2022, and associated correspondences used to provide the relevant parties of record with appropriate notice in accordance with the provisions set forth in 310 CMR 40.1403, are included herein as Appendix A.

3.0 IMMEDIATE RESPONSE ACTION ACTIVITIES

The following subsections provide a summary of the response actions completed at the subject site under RTN 3-57579 to-date, including preliminary investigatory and monitoring data, as required by 310 CMR 40.0424(1)(c) and (f).

3.1 Emergency Response Actions

The removal of the tractor trailer and other preliminary response actions were witnessed by PEN Fuel Co., personnel from the Department's Northeast Regional Office, and fire companies from the Massachusetts Port Authority, the Town of Boxford, and the Town of North Andover. Preliminary response action undertaken by U.S. Ecology of Franklin, Massachusetts (US Ecology) included containment and removal of the small quantities of petroleum released to the ground surface. Additional parties also reportedly present during this time included Police and other municipal personnel, the Massachusetts Department of Transportation (DOT), and Coady's Towing of Lawrence, Massachusetts (Coady's Towing).

Personnel from Coady's Towing and PEN Fuel Co. successfully cut two (2) holes in the side of the overturned tanker using non-sparking tools to allow access to each compartment with a drop tube to pump the gasoline out of the tanker compartments. The fuel was transferred to another PEN Fuel Co. tanker truck and removed from study area without incident. A reconciliation of the volume of the fuel removed the overturned tanker compared to the volume of fuel that had been manifested within the tanker indicated that no gasoline was reportedly lost from the overturned tanker into the environment during this incident.

National Grid then cut the utility pole and temporarily suspended the pole to allow for the extrication of the overturned truck. National Grid ultimately replaced the utility pole with a new pole on the evening of July 9, 2022. The tanker truck was righted by Coady's Towing and was inspected by DOT personnel before being towed from the site, at which time a small quantity of motor oil was noted on the surface of the roadway. This incidental oil was also contained and recovered using hand tools and adsorbent materials (e.g., Speedy Dry). Recovered adsorbents and impacted surface soil were containerized in three (3) 55-gallon capacity steel drums.

3.2 Selective Soil Excavation Activities

CHCI mobilized to the site on July 11, 2022 to assess site conditions and begin remediation activities, which included excavation and sampling of the impacted soil. Due to proximity to protected wetlands, these activities were completed under a duly-executed WPA Emergency Certification Form. During excavation activities which were completed on July 11 and 12, 2022, CHCI was present on-site to document soil conditions during ground intrusive activities in accordance with Department Guidance Documents and Policy. The excavation activities were conducted by US Ecology utilizing a CAT Model 4022 mini excavator to remove soils from the sloped embankment along the southern side of the Ipswich Road right-of-way.

During selective excavation work, soil samples were collected on nearly a continuous basis for both field screening and potential laboratory analyses. Excavated soils were subject to segregation based on visual, olfactory, and field screening indications of petroleum or AFFF impact. The excavated area was extended vertically to depths of approximately 6 inches below grade and horizontally until no readily-apparent indications of impact were observed.

Soils that were considered to be remediation waste were put in roll-off containers to be taken off site to the Town of Boxford Department of Public Works (DPW) yard with the consent of the DPW representative and the Town Administrator. The area of excavation was then covered in plastic sheeting and weighted down by tires. Straw waddles were installed along the perimeter to prevent erosion. On July 19, 2022, additional erosion control measures were also approved and deployed in the area to maintain slope stability as requested by the Town of Boxford Conservation Commission Agent.

3.3 Soil Sample Collection and Analyses

Following the selective excavation activities described in Section 3.1, soil samples were collected from the limits of the excavations for confirmatory laboratory analyses. A total of six (6) soil samples were collected from the terminus of the excavation activities, along with two (2) soil samples collected to represent "background" conditions outside of the area of the vehicle accident and one (1) waste characterization sample. These soil samples were submitted to Alpha Analytical Laboratory of Westborough, Massachusetts (Alpha) for the analyses of target volatile organic compounds (VOCs), target polynuclear aromatic hydrocarbons (PAHs), concentrations of volatile petroleum hydrocarbon (VPH) and extractable petroleum hydrocarbon (EPH) fractions, and PFAS by Department-approved Methods.

The analytical results of these soil samples have been tabulated in Tables 1 through 3, while a completed reproduction of the laboratory reports have provided in Appendix B. The locations of individual soil samples and the limits of excavation are shown on Figure 5 while the locations of "background" samples B-1 and B-2 are shown on Figure 3.

3.4 Waste Management

The IRA activities initiated at this site under RTN 3-37579 resulted in the excavation and temporary storage of approximately 30 cubic yards of OHM-impacted soil from this site, contained in both 55-gallon steel drums and roll off containers staged at the Town of Boxford DPW property at 7B Spofford Road. Waste characterization samples were collected and profiling/manifesting of the contained materials continues. Complete records on the disposition of this waste stream will be included in the next regulatory submittal to be filed for RTN 3-37579

3.5 Public Involvement

Aside from the notice submitted to the Town of Boxford Chief Municipal Officer and Board of Health pursuant to the requirements set forth in 310 CMR 40.1403(3)(h) that included a reproduction of the RNF submitted to the Department, no other known public involvement activities were required during this portion of the project. Select notifications have also been made related to the Emergency Certification provided Pursuant to the WPA and Town of Boxford Wetland Bylaw, while future actions in WPA jurisdictional areas will be the subject of pending submittals with the Town of Boxford Conservation Commission.

4.0 FURTHER IRA ACTIVITIES

The following subsections provide a summary of the work still anticipated to be completed at the subject property pursuant to 310 CMR 40.0424(1)(e) and (g), along with additional activities anticipated to be completed within the next sixty (60) days. The results of these activities will be presented in future regulatory submittals that will be prepared for this site in accordance with the relevant provisions of 310 CMR 40.0400. At this time, no federal, state, or local permits aside from those being obtained from the Town of Boxford are viewed to be necessary to complete the IRA activities described herein.

4.1 Groundwater Monitoring Well Installation

It is anticipated that three (3) groundwater monitoring wells will be installed to assess the impact to groundwater resulting from this vehicle accident and response activities. One (1) well will be installed in the area of excavation to assess impact derived from the vehicle accident and application of AFFF while two (2) additional wells will be installed outside the area of potential impact to serve as points of comparison to "background" conditions. Given the ubiquitous nature of PFAS compounds, these two (2) additional wells will aid in determination of concentrations of PFAS which may be present in the environment in absence of these release conditions (i.e., anthropogenic ambient background). They will also serve as controls for potential of cross contamination by installation and sampling methods. Select rinse 'blanks' may also be collected at the discretion of the supervising professional due to the ubiquitous nature of PFAS in the environment.

The wells will be constructed of 2-inch polyvinyl chloride (PVC) well materials installed to a sufficient depth and screened across the water table, to function as a "water table" style groundwater monitoring devices. The well screens and annulus will be surrounded by a sand pack and sealed at depth using bentonite. The monitoring wells will be set in traffic-bearing roadboxes flush with existing grade and developed upon completion. A top of casing (TOC) elevation survey may be completed as needed to determine water table elevation and groundwater flow direction.

4.2 Groundwater Monitoring and Sampling

Periodic groundwater monitoring activities will include gauging of site-related wells using a decontaminated electronic interface probe (EIP) capable of measuring depth of groundwater from the surveyed reference elevation situated at the top of each monitoring well casing, and the presence/thickness of light non-aqueous phase liquid (NAPL), with an accuracy of ± 0.01 feet.

Periodic groundwater sampling activities will be accomplished using "low-flow" sampling techniques with a peristaltic pump, dedicated disposable polyethylene tubing, and a multimeter probe set within a flow-through cell to confirm the stability of groundwater at the point of sampling. In this manner, site-related wells will be purged of three (3) volumes of "standing formation" groundwater or until geochemical parameters indicate that stability has been achieved during pumping prior to collecting the groundwater samples. Groundwater sampling may also be accomplished using manual sampling techniques employing disposable, bucket-type bailers in instances at the discretion of the supervising professional.

It is currently anticipated that collected groundwater samples will be submitted to Alpha for laboratory analyses of targeted VOCs, PAHs, VPH/EPH fractions, and PFAS using Department-approved methods. If analytical results indicate the need, the groundwater monitoring well network may be expanded to fully delineate the plume associated with this RTN. Additional samples may also be collected a background and 'blank' samples may also be collected at the discretion of the supervising professional due to the ubiquitous nature of PFAS in the environment.

4.3 Private Drinking Water Supply Well Sampling

If indicated by the results of the groundwater monitoring and sampling, CHCI may elect to conduct sampling of private water supply wells at select nearby properties within 500 feet of the vehicle accident locale. This process will require coordination to access and sample said parcels, as well as consent from the respective owners. Any such samples would be collected from the closest location possible to the pressure tank. The sample will be collected after purging the private water supply system by activation and continuous operation of the interior water spigot for approximately ten (10) minutes to collect a representative sample. The collected samples will be submitted to Alpha for analyses of target VOC, target PAHs, VPH/EPH fractions, and PFAS, as indicated by the results of the groundwater sampling analytical results.

Background and blank samples may also be collected at the discretion of the supervising professional due to the ubiquitous nature of PFAS in the environment.

4.4 Resource Area Protection and Site Restoration Activities

Once excavation and groundwater monitoring well installation is completed, PEN Fuel Co. anticipates completing resource area restoration activities in the manner prescribed by the Boxford Conservation Commission, which is anticipated to include a resource area band boundary survey completed by Williams & Sparages Engineering of Middleton, Massachusetts to ensure that the backfill and restoration of the area of excavation and associated erosion control(s) are appropriate for this site. The excavation will be backfilled at the completion of excavation activities. The fill used in this project shall be clean fill, and not contain trash, refuse, or other construction debris such as bricks, plaster, lath, paper, cardboard, pipe, tire, ashes, etc. Sedimentation barriers shall be inspected, certified, and maintained in good repair until the disturbed areas have been stabilized in accordance with Boxford requirements.

4.5 Characterization and Management of Waste

At this time, future characterization and management of waste associated with RTN 3-37579 is believed to be limited to relatively small quantities of OHM-impacted soil or groundwater. Other future waste is not anticipated to be produced during the remaining site redevelopment activities being contemplated for this property. However, if an additional volume of impacted soils needs characterization and/or off-site management as part of this project, analytical testing and field screening activities will be utilized to segregate this material from that other remaining material that is viewed to be suitable for on-site reuse as described previously in Section 3.0.

Soils to be transported off-site for recycling/disposal will be encapsulated in polyethylene sheeting and/or roll off containers at the DPW facility for temporary storage in accordance with Department Guidance Documents and Policies and standard industry practice. Temporarily stored soil stockpiles will be

encapsulated with polyethylene sheeting in such a way as to prevent the erosion of the stockpiles by wind, rain, or stormwater flow. Waste will be appropriately managed by a licensed hauler and treated or recycled as needed as a permitted facility.

4.6 Limitations of IRA

As the conditions which gave rise to this new RTN are already of-record with the Department under RTN 3-37579, and this IRA Plan is being prepared and submitted to address and manage OHM-impacted media being targeted for remediation as detailed herein, only conditions that are considered to be truly "new", or situations that represent "significant changes" in existing site conditions, will be contemplated within the context of the criteria for regulatory notification under 310 CMR 40.0300.

Acknowledging this history, the degree to which site conditions are determined to be "new" or "significantly different" from those previously documented in the associated records will be subjected to the judgment of the supervising professional in responsible charge of the response actions or assessment work conducted hereunder. Should such conditions be encountered, the work being performed in conjunction with this **IRA** will be suspended while appropriate notification is provided.

On-site health and safety practices in accordance with standards set forth by the Occupational Safety and Health Administration (29 CFR 1910.120) will continue to be observed by workers associated with this IRA for the duration of field activities. A site-specific Soil Management Plan and a site-specific Health and Safety Plan have been prepared for these activities and will be utilized by CHCI personnel and their subcontractors during the activities described herein. If site conditions become significantly different from those previously documented for this site, if an Imminent Hazard is identified to exist, or if newly-discovered conditions requiring a two (2) or seventy-two (72) hour notification of a release pursuant to 310 CMR 40.0300 are encountered, all work being performed in conjunction with the IRA shall be suspended while appropriate notification is provided.

5.0 FINDINGS AND CONCLUSIONS

The following is a statement of the findings of this IRA Plan completed to outline further response actions planned to assess and address residual hydrocarbon impact identified at the Tractor Trailer Vehicle Accident Site situated along Ipswich Road and conclusions based thereon:

- The vehicle accident site is located along the southern shoulder of Ipswich Road between Porter Road and Mulberry Lane in a predominantly residential portion of Boxford, Massachusetts.
- On July 9, 2022, a tractor trailer hauling gasoline overturned and struck a telephone pole during a vehicle accident on the southern edge of Ipswich Road releasing less than 10 gallons of grease and engine oil to the ground and roadway surface; none of the gasoline or diesel motor fuel was released as the result of this accident.
- Initial response actions at the vehicle accident site included deployment of approximately 30 gallons of FireAde 2000 Brand AFFF to the environment as a precautionary fire suppressant.
- Receptors in the study area appear to be limited to surficial soils at the location of the release, but may also include subsurface groundwater, wetlands, surface water, and nearby private water supply wells.
- Excavation activities appear to have been successful in removing the impacted soils from the site, resulting in approximately 30 cubic yards of soil temporarily stored at the DPW yard awaiting final characterization and management.

Based on current site conditions, it is anticipated that significant strides towards site stability have been achieved as the result of the remedial efforts implemented under the Department authorized IRA for RTN 3-37579. Further soil and groundwater samples will likely need to be collected from this site to confirm these assertions, but only limited future management and recycling of incremental quantities of petroleum-impacted material from the property are anticipated from this point moving forward.

Following removal of the soil and groundwater, none of the remaining conditions at this site are viewed to pose an Imminent Hazard, represent a Condition of Substantial Release Migration, or otherwise have the potential to meet Critical Exposure Pathway criteria. Accordingly, further research on potential receptors situated in the vicinity of the site, combined with planned soil and groundwater characterization efforts, will provide additional information to complete the evaluations necessary to determine if site conditions are stable and comply with the remaining criteria for IRA Completion specified in 310 CMR 40.0427.

These conclusions are based on the subsurface conditions encountered at this site, the nature and location of potential receptors in the site area, and analytical results from groundwater sampling activities presented herein. Insofar as the specific information required by 310 CMR 40.0424 has been provided to the Department in this submittal the objectives stated previously herein for this Report are viewed to have been achieved.

6.0 **REFERENCES**

The following is a list of references for regulations, guidance documents, policies, and/or other information reviewed, cited, incorporated, or otherwise utilized during the preparation and review of this Report:

- The Commonwealth of Massachusetts:
 - Department of Environmental Protection
 - Department of Fire Services
 - o Geographic Information Systems
- Town of Boxford:
 - Fire Department
 - Conservation Commission
 - o Health Department
 - Assessor's Department
- Lawrence, MA-NH 15-Minute Series Topographic Map, United States Geologic Survey (1987)
- Interviews, records, and information provided by PEN Fuel Co. and employees

7.0 LIMITATIONS AND QUALITY ASSURANCE/CONTROL

This Report has been prepared in accordance with standard industry practices related to environmental engineering, geology, and hydrogeology generally accepted in the Commonwealth of Massachusetts. This Report represents the results of work and actions completed by CarriageHouse Consulting, Inc. and other parties on behalf of P E N Fuel Co., Inc., for the purpose of evaluating subsurface conditions at this site. The information received, obtained, or otherwise provided by those parties or references cited herein was used to substantiate those conclusions and recommendations contained herein or transmitted herewith, subject to the judgment of the supervising professional. Subsurface conditions encountered at this site may not directly correlate to those stated herein, or extrapolated from herein, and are subject to change with time.

The following personnel certify that quality assurance and quality control procedures were diligently observed during data collection, reduction, analyses, and preparation of this Report by CarriageHouse Consulting, Inc. to ensure the content, accuracy, and quality of this document:

McKayla M. Olig

Environmental Scientist

Karlyn J. Whipple Senior Project Manager

Brian D. Moore, P.G., L.S.P. President

Date

Figures

Universal Transverse Mercator Coordinates:

4 729 312 m North 332 512 m East Grid Zone 19

Scale 1 : 25,000 1000 0 1000 2000 3000 4000 FEET

MA RIMA USGS Quadrangle Location(s) Lawrence, MA-NH Latitude: 42° 41′ 53″ N Longitude: 71° 02′ 41″ W

Contour Intervals are 3 meters based on National Geodetic Vertical Datum of 1929 (Refer to References)

	FIGU	JRE 1										
l	LOCUS PLAN											
l	Tractor Trailer Vo	hicle Accident Site										
l	Ipswich Road (between Po	orter Rd. and Mulberry Ln.)										
	Ipswich, M	assachusetts										
l	Ref.: Locus Plan	Checked By: BDM										
l	Drafted By: ELS	Date: 07/15/22										
l	Revised By: HKY	Date: 07/28/22										
	Source(s): United States Geolog Topographic Maps - Lawrence,	ic Survey 7.5 x 15 Minute Series MA-NH, Quadrangle (1987)										
1	CARRIAGE HOUSE	CONSULTING, INC.										

Gardner Residence	Owner/Occupant
455 Ipswich Rd.	Street Address
13-2-7	Parcel ID (Map-Block-Lot)
⊕	Approximate Location of Private Domestic Water Supply Well
	Parcel/Property Boundaries
	Edge of Roadway/Traveled Way
\sim	Intermittent Surface Water
<u> </u>	Mapped Resource Area Border
	Headwall/Culvert
	Surface water flow direction
ව	Utility Pole
-OHW-	Location of Overhead Wires

40 Scale in feet (Approximate)

FIGURE 2												
SITE	E PLAN											
Tractor Trailer Vehicle Accident Site												
Ipswich Road (between Porter Rd. and Mulberry Ln.)												
Boxford, Massachusetts												
Ref.: Study Area Plan	Checked By: BDM											
Drafted By: BDM	Date: 07/25/22											
Revised By: HKY	Date: 08/24/22											
Source: Town of Boxford Municipal Office Plans and Records,												
Site Plans, and CHCI Field Reconnaissance												
CARRIAGE HOUSE	CONSULTING, INC.											

455 Ipswich Rd. 13-2-7

₽

Gardner Residence Owner/Occupant Street Address Parcel ID (Map-Block-Lot) Approximate Location of Private Domestic Water Supply Well Location of Accident Parcel/Property Boundaries Soil Sample Location Edge of Roadway/Traveled Way Open Space (Municipal) Open Space (Private) Mapped/Intermittent Surface Water Mapped Resource Area Border Headwall/Culvert Surface water flow direction

200

Scale in feet (Approximate)

FIGURE 3 AREA PLAN Tractor Trailer Vehicle Accident Site Ipswich Road (between Porter Rd. and Mulberry Ln.) Boxford, Massachusetts Ref.: Study Area Plan Checked By: BDM Drafted By: BDM Date: 07/25/22 Date: 08/24/22 Revised By: HKY Source: Town of Boxford Municipal Office Plans and Records, Site Plans, and CHCI Field Reconnaissance CARRIAGE HOUSE CONSULTING, INC.

Legend

-			
	Sole	e Source Aquifers	
	DEI	P Approved Zone I	
	DEI	P Approved Zone II	
	IWF	PA	
	Sho	oreline	
r Features	Hvc	Irologic Connection	
	Me:	an Low Water Line	
	Wet	land Limit	
iwav		sura Lina	
limited access	Ma	sule Lille	
nhway		sh/bog	
or	VVO	oded marsh	
	, Cra	nberry Bog	
	Salt	Marsh	
	Ope	en Water	
	Res	servoir (with PWSID)	
ess Hwy)	Tida	al Flats	
lwy)	Bea	ach/Dune	
pered Hwy)	Hig	h Yield NPDWSA	
water Source	Med	dium Yield NPDWSA	
e	Hig	h Yield PPA	
oundwater Source	Med	dium Yield PPA	
Water	Pro	tected Open Space	
ection Zone A	Maj	or Basins	
rnal Pools	Trai	nsmission Lines	
abitats of Rare Wildlife	Том	n Boundary	
itats of Rare Species		,	
ronmental Concern			
S	GIS data p	c and Environmental	
	Information	(MassGIS),	
data obtained:	Commonw	ealth of Massachusetts	
	Affairs.		
500 0	500 1	1000 1500 2000 FEET	
	Scale $1:1$	2.000	
			╣
ENDIDI	FIGU	JRE 4 Descubles di an	
ENVIRO Trac	tor Trailer Vo	chicle Accident Site	
Ipswich Road	l (between P	orter Rd. and Mulberry Ln.)	
Ref.: ERP 9099	Boxford, M	assachusetts Checked By: BDM	-
Drafted By: ELS		Date: 07/15/22	
Revised By: HKY Source: Massachus	setts Geograp	Date: 07/28/22 hic Information System	-
CADDIACT	Horse		
UAKKIAGE	TIUUSE	UUNSULTING, INC.	

Gardner Residence	Owner/Occupant
455 Ipswich Rd.	Street Address
13-2-7	Parcel ID (Map-Block-Lot)
	Parcel/Property Boundaries
	Edge of Roadway
	Edge of Driveway/Traveled Way
\$	Soil Sample Location
\sim	Intermittent Surface Water
<u> </u>	Mapped Resource Area Border
	Headwall/Culvert

þ

-OHW-

RCP

Surface water flow direction Utility Pole

Location of Overhead Wires Reinforced Concrete Pipe

20 Scale in feet (Approximate)

FIGURE 5											
SOIL SAMPLE LOCATION PLAN											
Tractor Trailer Ve	ehicle Accident Site										
Ipswich Road (between Porter Rd. and Mulberry Ln.)											
Boxford, Massachusetts											
Ref.: ssamp	Checked By: BDM										
Drafted By: BDM	Date: 07/25/22										
Revised By: HKY	Date: 08/24/22										
Source: Town of Boxford Municipal Office Plans and Records,											
Site Plans, and CHCI Field Reconnaissance											
CARRIAGE HOUSE	CONSULTING, INC.										

Tables

TABLE 1

Soil Sample Analytical Data Summary Volatile Organic Compounds and Volatile Petroleum Hydrocarbon Fractions Tractor Trailer Vehicle Accident Ipswich Road (between Porter Rd. and Mulberry Ln.) Boxford, Massachusetts July 12, 2022

MCP Method 1 Risk Characterization Standards Listed in 310 CMR 40.0000 (effective June 20, 2014)

Category S-1/C	FW-1 Soil Stat	ndard (ug/g)	2	30	40	400	0.1	4	100	1,000	100
Category S-1/C	<i>FW-2 Soil Sta</i> t	ndard (ug/g)	40	500	500	100	100	20	100	1,000	100
Category S-1/C	FW-3 Soil Stat	ndard (ug/g)	40	500	500	500	100	500	100	1,000	100
Category S-2/C	FW-1 Soil Stat	ndard (ug/g)	2	30	40	400	0.1	4	500	3,000	300
Category S-2/C	GW-2 Soil Stat	ndard (ug/g)	200	1,000	1,000	100	100	20	500	3,000	500
Category S-2/C	FW-3 Soil Stat	ndard (ug/g)	200	1,000	1,000	1,000	500	1,000	500	3,000	500
Category S-3/C	GW-1 Soil Stat	ndard (ug/g)	2	30	40	400	0.1	4	500	5,000	300
Category S-3/C	<i>FW-2 Soil Sta</i> t	ndard (ug/g)	400	2,000	1,000	100	100	20	500	5,000	500
Category S-3/C	FW-3 Soil Stat	ndard (ug/g)	1,000	3,000	3,000	3,000	500	3,000	500	5,000	500
						Labora	atory Analytical .	Results			
Soil Sample	Date	Depth	Benzene	Toluene	Ethyl-	Total	MTBE	Naph-	C ₅ -C ₈	C ₉ -C ₁₂	C ₉ -C ₁₀
Location or ID		(feet)	(ug/g)	(ug/g)	benzene	Xylenes	(ug/g)	thalene	Aliphatics	Aliphatics	Aromatics
					(ug/g)	(ug/g)		(ug/g)	(ug/g)	(ug/g)	(ug/g)
S-2	7/12/22	0-0.5	<0.119	<0.119	<0.119	<0.238	<0.060	0.253	<5.95	<5.95	<5.95

Notes: MTBE - methyl tert-butyl ether (CAS# 1634-04-4, a.k.a. methyl t-butyl ether)

Naphthalene - values presented reflect results of laboratory analyses conducted for volatile organic compounds only

Aliphatics - values represent adjusted aliphatic hydrocarbons (compounds having an open-chain structure such as parafins, olefins, acetylenes, and derivatives thereof) for the boiling point range associated with the carbon range (C_n - C_n) defined by the MassDEP approved method

Aromatics - values represent unadjusted aromatic hydrocarbons (compounds containing at least one benzene ring such as cyclic hydrocarbons and derivatives thereof) for the boiling point range associated with the carbon range (C_n - C_n) defined by the MassDEP approved method

ug/g - micrograms per gram (parts per million)

<0.09 - not detected at or above the associated compound(s) method reporting limit(s)

TABLE 2

Soil Sample Analytical Data Summary Polynuclear Aromatic Hydrocarbons and Extractable Petroleum Hydrocarbons Fractions Tractor Trailer Vehicle Accident Ipswich Road (between Porter Rd. and Mulberry Ln.) Boxford, Massachusetts

July 12, 2022

MCP Method 1 Risk Characterization Standards Listed in 310 CMR 40.0000 (effective June 20, 2014)

Category S-1/G	W-1 Soil Stan	dard (ug/g)	4	1	1,000	7	2	7	1,000	70	70	0.7	1,000	1,000	7	0.7	4	10	1,000	1,000	3,000	1,000
Category S-1/G	GW-2 Soil Stan	dard (ug/g)	1,000	600	1,000	7	2	7	1,000	70	70	0.7	1,000	1,000	7	80	20	500	1,000	1,000	3,000	1,000
Category S-1/G	GW-3 Soil Stan	dard (ug/g)	1,000	10	1,000	7	2	7	1,000	70	70	0.7	1,000	1,000	7	300	500	500	1,000	1,000	3,000	1,000
Category S-2/G	W-1 Soil Stan	dard (ug/g)	4	1	3,000	40	7	40	3,000	400	400	4	3,000	3,000	40	1	4	20	3,000	3,000	5,000	1,000
Category S-2/G	W-2 Soil Stan	dard (ug/g)	3,000	600	3,000	40	7	40	3,000	400	400	4	3,000	3,000	40	80	20	1,000	3,000	3,000	5,000	3,000
Category S-2/G	GW-3 Soil Stan	dard (ug/g)	3,000	10	3,000	40	7	40	3,000	400	400	4	3,000	3,000	40	500	1,000	1,000	3,000	3,000	5,000	3,000
Category S-3/G	W-1 Soil Stan	dard (ug/g)	4	1	5,000	300	30	300	5,000	3,000	3,000	30	5,000	5,000	300	1	4	20	5,000	5,000	5,000	1,000
Category S-3/G	GW-2 Soil Stan	dard (ug/g)	5,000	600	5,000	300	30	300	5,000	3,000	3,000	30	5,000	5,000	300	80	20	3,000	5,000	5,000	5,000	5,000
Category S-3/G	W-3 Soil Stan	dard (ug/g)	5,000	10	5,000	300	30	300	5,000	3,000	3,000	30	5,000	5,000	300	500	3,000	3,000	5,000	5,000	5,000	5,000
												Laborator	y Analytical	Results								
Soil Sample	Date	Depth	Acenaph-	Acenaph-	Anthra-	BaA	BaP	BbF	BgP	BkF	Chrysene	DaA	Fluoran-	Fluorene	IP	2-Methyl-	Naph-	Phenan-	Pyrene	C ₉ -C ₁₈	C ₁₉ -C ₃₆	C ₁₁ -C ₂₂
Location or ID		(feet)	thene	thylene	cene	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	(ug/g)	thene	(ug/g)	(ug/g)	naphthalene	thalene	threne	(ug/g)	Aliphatics	Aliphatics	Aromatics
			(ug/g)	(ug/g)	(ug/g)								(ug/g)			(ug/g)	(ug/g)	(ug/g)		(ug/g)	(ug/g)	(ug/g)
S-2	7/12/22	0.0-0.5	<1.88	<1.88	3.82	16.3	14.3	21.5	7.24	22.3	21.9	2.95	48.8	3.57	8.77	<1.88	<1.88	39.8	43.3	<37.6	<37.6	381
S- 3	7/12/22	0.0-0.5	<0.708	<0.708	1.71	7.35	7.12	10.3	4.18	4.17	10.2	1.48	20.7	1.52	4.79	<0.708	<0.708	16.3	17.9	<14.2	20.6	191
S-4	7/12/22	0.0-0.5	<0.847	<0.847	<0.847	1.11	1.16	1.88	1.72	<0.847	1.71	<0.847	2.75	<0.847	<0.847	<0.847	<0.847	1.52	2.57	<16.9	<16.9	39.2
S-5	7/12/22	0.0-0.5	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<0.518	<10.4	<10.4	15.5
G . 0	= /1 0 /0 0		0 = 00	.0 = 00	(0 = 00	·0 = 00	10 = 20		0 = 00					0 = 00	.0 = 00	.0 = 00	10 = 20	(0 = 60	10 = 20		1	1

Notes:

BkF - benzo(k)fluoranthene

DaA - dibenzo(a,h)anthracene

IP - indeno(1,2,3-cd)pyrene

BbF - benzo(b)fluoranthene BgP - benzo(g,h,i)perylene

BaA - benzo(a)anthracene

BaP - benzo(a)pyrene

Naphthalene - the values presented in this Table for this compound reflect the results of laboratory analyses conducted for extractable hydrocarbons only

Aliphatics - values represent unadjusted aliphatic hydrocarbons (organic compounds having an open-chain structure such as parafins, olefins, acetylenes, and derivatives thereof) for the boiling point range associated with the carbon range (C_n - C_n) defined by the MassDEP M Aromatics - values represent adjusted aromatic hydrocarbons (compounds containing at least one benzene ring such as cyclic hydrocarbons and derivatives thereof) for the boiling point range associated with the carbon range (C_n - C_n) defined by the MassDEP Method ug/g - micrograms per gram (parts per million)

<0.526 - not detected at or above the associated compound(s) method reporting limit(s)

- shading indicates detected concentration of targeted analyte exceeds one or more applicable MCP Method 1 Standards presented above

TABLE 3

Soil Sample Analytical Data Summary Perfluoroalkyl and Polyfluoroalkyl Substances Tractor Trailer Vehicle Accident Ipswich Road (between Porter Rd. and Mulberry Ln.) Boxford, Massachusetts July 11, 2022 through July 12, 2022

		-								MCI	P Method 1	Risk Chara	acterization .	Standards L	isted in 310	CMR 40.0	000 (prom	ulgated Dec	ember 27, 2	2019)						
Category S-	-1/GW-1 Soil S	Standard (ug/g)	0.3	0.32	0.72	0.5	2.0	0.3	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-1/GW-2 Soil S	Standard (ug/g)	300	300	300	300	300	300	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-1/GW-3 Soil S	Standard (ug/g)	300	300	300	300	300	300	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-2/GW-1 Soil S	Standard (ug/g)	0.3	0.32	0.72	0.5	2.0	0.3	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-2/GW-2 Soil S	Standard (ug/g)	400	400	400	400	400	400	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-2/GW-3 Soil S	Standard (ug/g)	400	400	400	400	400	400	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-3/GW-1 Soil S	Standard (ug/g)	0.3	0.32	0.72	0.5	2.0	0.3	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-3/GW-2 Soil S	Standard (ug/g)	400	400	400	400	400	400	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
Category S-	-3/GW-3 Soil S	Standard (ug/g)	400	400	400	400	400	400	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*
		-											Labor	atory Analy	tical Results	;										
Soil Sample	Date	Depth	PFDA	PFNA	PFOA	PFHpA	PFOS	PFHxS	PFTA	PFTrDA	PFDoA	PFUnA	PFHxA	PFPeA	PFBA	PFDS	PFNS	PFHpS	PFPeS	PFBS	8:2FTS	6:2FTS	4:2FTS	FOSA	NEtFOSAA	NMeFOSAA
Location or ID		(feet)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)	(ng/g)
B-1	7/11/22	0.0-0.5	<0.239	<0.239	<0.239	<0.239	<0.239	<0.239	<0.477	<0.477	<0.477	<0.477	<0.477	<0.477	<0.477	<0.477	<0.955	<0.477	<0.955	<0.239	<0.477	<0.477	<0.955	<0.477	<0.477	<0.477
B- 2	7/11/22	0.0-0.5	<0.239	<0.239	<0.239	<0.239	<0.239	<0.239	<0.478	<0.478	<0.478	<0.478	<0.478	<0.478	<0.478	<0.478	<0.955	<0.478	<0.955	<0.239	<0.478	<0.478	<0.955	<0.478	<0.478	<0.478
WC-1	7/12/22	0.0-0.5	< 0.425	<0.425	<0.425	< 0.425	<0.425	<0.425	<0.850	<0.850	< 0.850	<0.850	1.57	< 0.850	<0.850	<0.425	<1.70	<0.850	<1.70	<0.425	<0.850	12.0	<1.70	<0.850	<0.850	<0.850
S-1	7/12/22	0.0-0.5	<0.254	<0.254	<0.254	<0.254	0.328	< 0.254	<0.507	< 0.507	<0.507	< 0.507	<0.507	<0.507	<0.507	<0.507	<1.01	<0.507	<1.01	<0.254	< 0.507	<0.507	<1.01	<0.507	<0.507	<0.507
S-2	7/12/22	0.0-0.5	<0.264	<0.264	<0.264	<0.264	<0.264	< 0.264	<0.528	<0.528	< 0.528	< 0.528	0.733	<0.528	<0.528	<0.528	<1.06	<0.528	<1.06	<0.264	< 0.528	3.44	<1.06	<0.528	< 0.528	<0.528
S- 3	7/12/22	0.0-0.5	<0.246	<0.246	<0.246	<0.246	0.328	<0.246	<0.492	<0.492	< 0.492	< 0.492	< 0.492	< 0.492	< 0.492	< 0.492	<0.983	< 0.492	<0.983	<0.246	<0.492	2.74	<0.983	<0.492	< 0.492	< 0.492
S-4	7/12/22	0.0-0.5	<0.907	<0.907	< 0.907	<0.907	1.02	<0.907	<1.81	<1.81	<1.81	<1.81	4.24	<1.81	<1.81	<1.81	<3.63	<1.81	<3.63	< 0.907	<1.81	20.4	<3.63	<1.81	<1.81	<1.81
S-5	7/12/22	0.0-0.5	< 0.357	<0.357	<0.357	< 0.357	<0.357	<0.357	<0.714	<0.714	<0.714	<0.714	1.59	<0.714	<0.714	<0.714	<1.43	<0.714	<1.43	<0.357	<0.714	9.79	<1.43	<0.714	<0.714	<0.714
S-6	7/12/22	0.0-0.5	<0.439	<0.439	<0.439	< 0.439	<0.439	< 0.439	<0.878	< 0.878	< 0.878	< 0.878	< 0.878	< 0.878	< 0.878	<0.878	<1.76	< 0.878	<1.76	<0.439	< 0.878	< 0.878	<1.76	<0.878	<0.878	< 0.878

PFTA - Perfluorotetradecanoic Acid (CAS #376-06-7)

PFDoA - Perfluorododecanoic Acid (CAS #307-55-1)

PFUnA - Perfluoroundecanoic Acid (CAS #2058-94-8)

PFHxA - Perfluorohexanoic Acid (CAS #307-24-4)

PFPeA - Perfluoropentanoic Acid (CAS #2760-90-3)

PFTrDA - Perfluorotridecanoic Acid (CAS #72629-84-8)

PFDA - Perfluorodecanoic Acid (CAS #335-76-2)
PFNA - Perfluorononanoic Acid (CAS #375-95-1)
PFOA - Perfluoronectanoic Acid (CAS #335-67-1)
PFHpA - Perfluoroneptanoic Acid (CAS #375-85-9)
PFOS - Perfluoronectanesulfonic Acid (CAS #1763-23-1)
PFHxS - Perfluoronexanesulfonic Acid (CAS #355-46-4)
ng/g - nanograms per gram (parts per trillion)

<0.526 - not detected at or above the associated compound(s) method reporting limit(s)

* - indicates that a published value or Standard does not exist for this analyte

PFBA - Perfluorobutanoic Acid (CAS #375-22-4)

PFDS - Perfluorodecanesulfonic Acid (CAS #335-77-3) PFNS - Perfluorononanesulfonic Acid (CAS #68259-12-1) PFHpS - Perfluoroheptanesulfonic Acid (CAS #375-92-8) PFPeS - Perfluoropentanesulfonic Acid (CAS #2706-91-4) PFBS - Perfluorobutanesulfonic Acid (CAS #375-73-5) 8:2FTS -6:2FTS -4:2FTS -FOSA - F NEtFOSA

Notes:

8:2FTS - 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (CAS #120226-60-0)

6:2FTS - 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (CAS #27619-97-2)

4:2FTS - 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (CAS #757124-72-4)

FOSA - Perfluorooctanesulfonamide (CAS #754-91-6)

NEtFOSAA - N-Ethyl Perfluorooctanesulfonamidoacetic Acid (CAS #2991-50-6)

NMeFOSAA - N-Methyl Perfluorooctanesulfonamidoacetic Acid (CAS #2355-31-9)

Appendix A

Public Involvement and Participation Correspondences

U.S. Priority Mail September 6, 2022

Matthew Coogan Town Administrator Boxford Town Hall 7A Spofford Road Boxford, MA 01921

Re: Notification of Submittal of Release Notification Form Tractor Trailer Vehicle Accident Site

Ipswich Road (Between Porter Road and Mulberry Lane) Boxford, MA 01906 RTN 3-37579

To Whom it May Concern:

We have prepared this letter on behalf of our client, P E N Fuel Co., Inc., with the objective of providing the Chief Municipal Office and Health Department, by copy hereto, with the written notification required by provisions set forth in 310 CMR 40.0000, the Massachusetts Contingency Plan (MCP).

Please accept this correspondence as notice prepared pursuant to 310 CMR 40.0371(3) that the BWSC-103 Release Notification Form (RNF) attached hereto was prepared and submitted to the Massachusetts Department of Environmental Protection (the Department) on September 2, 2022 for response action activities initiated to address potential oil and/or hazardous material-impact identified at the location of a tractor trailer vehicle accident site. The Department has assigned Release Tracking Number (RTN) 3-37579 to these conditions.

This correspondence has also been prepared pursuant to 310 CMR 40.1403, the same portion of the MCP in which additional public involvement opportunities are described. Further information is available for site-**RTNs** through Department's on-line file viewer the following URL: related the at https://eeaonline.eea.state.ma.us/portal#!/search/wastesite. Requests to review the referenced report or other information related to this site may also be directed to the Department's Northeast Regional Office at 205B Lowell Street in Wilmington, MA 01887 (Phone 978-694-3200).

Please do not hesitate to contact us with any questions or comments at (508) 315-3146.

Respectfully, CarriageHouse Consulting, Inc.

Karlyn J. Whipple Senior Project Manager

Brian D. Moore, P.G., L.S.P. President

cc: Kendell Longo, Director of the Boxford Health Department, 7A Spofford Road, Boxford, MA 01921 (U.S Priority Mail)
 P E N Fuel Co., Inc, 18 Lark Avenue, Saugus, MA 01906 (electronic)

Enclosure

ñ		2	
₽	1	1	2
	-	1	1

Massachusetts Department of Environmental Protection *Bureau of Waste Site Cleanup* **RELEASE NOTIFICATION & NOTIFICATION**

Pursuant to 310 CMR 40.0335 and 310 CMR 40.0371 (Subpart C)

BWSC 103

3

Dalaasa	Trac	kina	Mum	har
Release	Trac	ĸmg	INUIII	UCI

- 37579

A. RELEASE OR THREAT OF RELEASE LOCATION:

RETRACTION FORM

1. Release Name/Location	n Aid:	IN FRONT OF 461 IPSWICH RO	AD	
2. Street Address:	461 IPSWICH R	OAD		
3. City/Town:	BOXFORD		4. ZIP Code:	019210000
5. Coordinates:	a. Latitude: N	42.01139	b. Longitude: W	71.04472

B. THIS FORM IS BEING USED TO: (check one)

▼ 1. Submit a **Release Notification**

2. Submit a Revised Release Notification

3. Submit a Retraction of a Previously Reported Notification of a release or threat of release including supporting documentation required pursuant to 310 CMR 40.0335 (Section C is not required)

(All sections of this transmittal form must be filled out unless otherwise noted above)

C. INFORMATION DESCRIBING THE RELEASE OR THREAT OF RELEASE (TOR):

1. Date and time of Oral Notification, if appli	icable:	7/9/2022		Time:	07:37	M AM	□ PM
		mm/dd/yy	уу		hh:mm		
2. Date and time you obtained knowledge of	f the Release or TOR:	7/9/2022		Time:	07:00	AM	ГРМ
		mm/dd/yy	уу		hh:mm		
3. Date and time release or TOR occurred, if	known:	7/9/2022		Time:	06:45	M AM	P M
Check all Notification Thresholds that apply (for more information see 310 CMR 40.0310 -	y to the Release or Threat of Re • 40.0315)	mm/dd/yy lease:	уу		hh:mm		
4.2 HOUR REPORTING CONDITIONS	5. 72 HOUR REPORTING C	ONDITIONS	6.	120 DAY	REPORTIN	NG CONDITI	ONS
a. Sudden Release	a. Subsurface Non-Aque Liquid (NAPL) Equal to a 1/2 Inch (.04 feet)	ous Phase or Greater than		a. Releas Soil or G Reportal	se of Hazar Froundwate	dous Materia r Exceeding tration(s)	al(s) to
▶ b. Threat of Sudden Release	b. Underground Storage Release	Fank (UST)		b. Releas Reportal Affectin	se of Oil to ole Concen g More that	Soil Exceedi tration(s) an n 2 Cubic Ya	ng d ards
C. Oil Sheen on Surface Water	C. Threat of UST Release			c. Releas Exceedii	se of Oil to ng Reportal	Groundwate ble Concentr	r ation(s)
d. Poses Imminent Hazard	d. Release to Groundwate Supply	er near Water		d. Subsu Liquid (1 1/8 Inch (.04 feet)	urface Non- NAPL) Equ (.01 feet) a	Aqueous Ph al to or Grea nd Less than	nase ter than n 1/2 Inch
Could Pose Imminent Hazard	E. Substantial Release M	igration					
f. Release Detected in Private Well							
g. Release to Storm Drain							
 h. Sanitary Sewer Release (Imminent Hazard Only) 							

Release Tracking Number

3 - 37579

C. INFORMATION DESCRIBING THE RELEASE OR THREAT OF RELEASE (TOR): (cont.)

7. List below the Oils (O) or Hazardous Materials (HM) that exceed their Reportable Concentration (RC) or Reportable Quantity (RQ) by the greatest amount.

Check here if an amount or concentration is unknown or less than detectable.

O or HM Released	CAS Number, if known	O or HM	Amount or Concentration	Units	RCs Exceeded, if Applicable (RCS-1, RCS-2,RCGW-1, RCGW-2)
ENGINE OIL/CRANKCASE OIL		0	10	GAL	N/A

Check here if a list of additional Oil and Hazardous Materials subject to reporting, or any other documentation relating to this notification is attached.

D. PERSON REQUIRED TO NOTIFY:

1. Check all that ap	oply:	a. change in	n contact name	🗆 b. cha	nge of address	C. change in the	person notifying
2. Name of Organiz	zation:	PEN FUEL C	COMPANY INC				
3. Contact First Na	ime:	NASSER			4. Last Name:	ABU-EID	
5. Street:		18 LARK AVE			6. Title:	TREASURER	
7. City/Town:	SAUGUS		8. State:	MA		9. ZIP Code:	019060000
10. Telephone:	781-246-0	0201	11. Ext.:		12. Email	NASSERA@ALP	RIME.COM
■ 13. Check he owner who is	 13. Check here if attaching names and addresses of owners of properties affected by the Release or Threat of Release, other than an owner who is submitting this Release Notification (required). 						
E. RELATIONS	SHIP O	F PERSON TO	RELEASE OR	THREA	T OF RELE	CASE: Check here	e to change relationship
☑ 1. RP or PRP	Γ	a. Owner	b. Operator	□ c. (Generator	d. Transporter	
	🔽 e. Ot	ther RP or PRP	Specify:	NON-SF	PECIFIED PRP		
2. Fiduciary,	Secured	Lender or Municip	ality with Exempt S	tatus (as d	efined by M.G.I	L. c. 21E, s. 2)	
3. Agency or	Public U	tility on a Right of	Way (as defined by	M.G.L. c	. 21E, s. 5(j))		
4. Any Othe	r Person (Otherwise Require	d to Notify Sj	pecify Rel	ationship:		

BWSC 103

Release Tracking Number

37579

3

F. CERTIFICATION OF PERSON REQUIRED TO NOTIFY:

, attest under the pains and penalties of perjury (i) that I have personally 1. I. NASSER ABU-EID examined and am familiar with the information contained in this submittal, including any and all documents accompanying this transmittal form, (ii) that, based on my inquiry of those individuals immediately responsible for obtaining the information, the material information contained in this submittal is, to the best of my knowledge and belief, true, accurate and complete, and (iii) that I am fully authorized to make this attestation on behalf of the entity legally responsible for this submittal. I/the person or entity on whose behalf this submittal is made am/is aware that there are significant penalties, including, but not limited to, possible fines and imprisonment, for willfully submitting false, inaccurate, or incomplete information.

2. By :	NASSER ABU-EID	3. Title:	TREASURER	
	Signature			
4. For:	PEN FUEL COMPANY INC	5. Date :	9/2/2022	_
	(Name of person or entity recorded in Section D)		mm/dd/yyyy	

6. Check here if the address of the person providing certification is different from address recorded in Section D.

7. Street:				
8. City/Town:		9. State:		10. ZIP Code:
11. Telephone:	12. Ext.:		13. Email:	

YOU ARE SUBJECT TO ANNUAL COMPLIANCE ASSURANCE FEES FOR EACH BILLABLE YEAR FOR TIER CLASSIFIED DISPOSAL SITES. YOU MUST LEGIBLY COMPLETE ALL RELEVANT SECTIONS OF THIS FORM OR DEP MAY RETURN THE DOCUMENT AS INCOMPLETE. IF YOU SUBMIT AN INCOMPLETE FORM, YOU MAY BE PENALIZED FOR MISSING A REQUIRED DEADLINE.

Date Stamp (DEP USE ONLY:)

Received by DEP on 9/2/2022 2:52:21 PM

CARRIAGEHOUSE CONSULTING, INC.

This document is a Statement of Provision for BWSC-103, Section C, Question 8:

The original tractor trailer vehicle accident included the tractor and trailer owned by PEN Fuel and the trailer containing gasoline. Reconciliation of the trailer inventory confirmed that no gasoline is believed to have been released to the environment as the result of the accident. Although some fluid was lost to the surficial soils at the accident site from the tractor engine, the tractor was successfully re-started after being winched back onto the roadway. No reported loss of diesel fuel was noted from the tractor saddle tanks as the result of the accident.

Three (3) municipal/inter-agency fire companies were deployed to the site, including Town of Boxford, and the incident commander directed the deployment of Aqueous Film-Forming Foam (AFFF) in a precautionary manner at the accident site. The volume and composition of the foam deployed at the accident site were reportedly approximately 30 gallons of FireAide 2000 brand AFFF.

Analyses of source area soil samples – including the composite soil samples collected for waste characterization - has indicated that the following three (3) compounds have been found in soils located proximate to the vehicle accident locale:

PFOS - Perfluorooctanesulfonic Acid (CAS #1763-23-1)
PFHxA - Perfluorohexanoic Acid (CAS #307-24-4)
6:2FTS - 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (CAS #27619-97-2)

None of the detected concentrations of these compounds in the collected soil samples exceeded the reportable concentrations promulgated by the Department in 310 CMR 40.1600.

This document is a Statement of Provision for BWSC-103, Section D, Question 13:

The location where the vehicle accident occurred is within the Ipswich Road right-of-way, at and adjacent to the southern edge of the paved portion of the right-of-way, between Porter Road (to the west) and Mulberry Lane (to the east). The right-of-way is owned by the Town of Boxford, and the Town Administrator has been identified as a point of contact for this municipal entity as follows:

Mr. Matthew Coogan Town Administrator Boxford Town Hall 7A Spofford Road Boxford, MA 01921 (978) 887-6000 Appendix B

Soil Sample Analytical Data

ANALYTICAL REPORT

Lab Number:	L2237077
Client:	CarriageHouse Consulting Inc. 8A Pleasant Street South Natick, MA 01760
ATTN:	Brian Moore
Phone:	(508) 315-3146
Project Name:	PEN-BOXFORD
Project Number:	MA220701
Report Date:	08/04/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:08042215:29

Project Name:PEN-BOXFORDProject Number:MA220701

 Lab Number:
 L2237077

 Report Date:
 08/04/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2237077-01	S-1	SOIL	BOXFORD, MA	07/12/22 12:25	07/12/22
L2237077-02	S-2	SOIL	BOXFORD, MA	07/12/22 12:20	07/12/22
L2237077-03	S-3	SOIL	BOXFORD, MA	07/12/22 12:10	07/12/22
L2237077-04	S-4	SOIL	BOXFORD, MA	07/12/22 11:55	07/12/22
L2237077-05	S-5	SOIL	BOXFORD, MA	07/12/22 12:05	07/12/22
L2237077-06	S-6	SOIL	BOXFORD, MA	07/12/22 11:45	07/12/22

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237077 Report Date: 08/04/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

L2237077

08/04/22

Lab Number:

Report Date:

Project Name: PEN-BOXFORD Project Number: MA220701

Case Narrative (continued)

Perfluorinated Alkyl Acids by Isotope Dilution

L2237077-01, -02, -03, -04, -06, WG1667173-1, WG1667173-1 (MEOH), WG1667173-2R, WG1667173-3, and WG1667173-4: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

L2237077-04 and -06: The MeOH fraction of the extraction is reported for perfluorooctanesulfonamide (fosa) due to better extraction efficiency of the perfluoro[13c8]octanesulfonamide (m8fosa) Extracted Internal Standard.

The Extracted Internal Standard recovery for the WG1667173-1 Method Blank, associated with L2237077-01 through -06, is below the acceptance criteria for perfluoro[13c8]octanesulfonamide (m8fosa) (less than 5%); however, the method blank is non-detect for all associated target analytes; therefore, no further action was taken.

WG1667173-2R: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

felly Mell Kelly O'Neill

Title: Technical Director/Representative

Date: 08/04/22

ORGANICS

SEMIVOLATILES

			08042215:29	
Project Name:	PEN-BOXFORD		Lab Number:	L2237077
Project Number:	MA220701		Report Date:	08/04/22
		SAMPLE RESULTS		
Lab ID:	L2237077-01		Date Collected:	07/12/22 12:25
Client ID:	S-1		Date Received:	07/12/22
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 16:49
Analytical Date:	08/02/22 14:58			
Analyst:	RS			
Percent Solids:	91%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab											
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.507		1					
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.507		1					
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.254		1					
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.01		1					
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.507		1					
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.01		1					
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.254		1					
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.254		1					
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.254		1					
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.507		1					
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.507		1					
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.254		1					
Perfluorooctanesulfonic Acid (PFOS)	0.328		ng/g	0.254		1					
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.254		1					
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.507		1					
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.01		1					
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.507		1					
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.507		1					
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.507		1					
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.507		1					
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.507		1					
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.507		1					
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.507		1					
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.507		1					

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BOXFORD, MA				Field Prep):	Not Specified
Client ID:	S-1				Date Rece	eived:	07/12/22
Lab ID:	L2237077-01				Date Colle	ected:	07/12/22 12:25
		SAMP	LE RESULT	6			
Project Number:	MA220701				Report I	Date:	08/04/22
Project Name:	PEN-BOXFORD				Lab Nur	nber:	L2237077
					S	erial_No	0:08042215:29

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	104		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	100		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	99		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	99		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	101		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	162	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	101		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	112		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	104		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	203	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	93		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	120		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	20		5-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	100		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	110		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	123		24-159	

		Serial_No:08042215				
Project Name:	PEN-BOXFORD		Lab Number:	L2237077		
Project Number:	MA220701		Report Date:	08/04/22		
		SAMPLE RESULTS				
Lab ID:	L2237077-02		Date Collected:	07/12/22 12:20		
Client ID:	S-2		Date Received:	07/12/22		
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified		
Sample Depth:						
Matrix:	Soil		Extraction Method:	ALPHA 23528		
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 16:49		
Analytical Date:	08/02/22 15:31					
Analyst:	RS					
Percent Solids:	88%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab										
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.528		1				
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.528		1				
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.264		1				
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.06		1				
Perfluorohexanoic Acid (PFHxA)	0.733		ng/g	0.528		1				
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.06		1				
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.264		1				
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.264		1				
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.264		1				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.44		ng/g	0.528		1				
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.528		1				
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.264		1				
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.264		1				
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.264		1				
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.528		1				
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.06		1				
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/g	0.528		1				
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.528		1				
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.528		1				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.528		1				
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.528		1				
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.528		1				
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.528		1				
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.528		1				

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BOXFORD, MA				Field Prep):)	Not Specified
Client ID:	S-2				Date Rec	eived:	07/12/22
Lab ID:	L2237077-02				Date Colle	ected:	07/12/22 12:20
		SAMP	LE RESULTS	5			
Project Number:	MA220701				Report I	Date:	08/04/22
Project Name:	PEN-BOXFORD				Lab Nur	nber:	L2237077
					S	erial_No	0:08042215:29

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

99		61-135	
104		58-150	
102		74-139	
173	Q	14-167	
89		66-128	
96		71-129	
103		78-139	
93		75-130	
193	Q	20-154	
99		72-140	
109		79-136	
96		75-130	
255	Q	19-175	
90		31-134	
116		61-155	
32		5-117	
112		34-137	
110		54-150	
104		24-159	
	 99 104 102 173 89 96 103 93 193 99 109 96 255 90 116 32 112 110 104 	99 104 102 173 Q 89 96 103 93 193 Q 99 109 96 255 Q 90 116 32 112 110 104	99 $61-135$ 104 $58-150$ 102 $74-139$ 173 Q $14-167$ 89 $66-128$ 96 $71-129$ 103 $78-139$ 93 $75-130$ 193 Q $20-154$ 99 $72-140$ 109 $79-136$ 96 $75-130$ 255 Q $19-175$ 90 $31-134$ 116 $61-155$ 32 $5-117$ 112 $34-137$ 110 $54-150$ 104 $24-159$

			08042215:29	
Project Name:	PEN-BOXFORD		Lab Number:	L2237077
Project Number:	MA220701		Report Date:	08/04/22
		SAMPLE RESULTS		
Lab ID:	L2237077-03		Date Collected:	07/12/22 12:10
Client ID:	S-3		Date Received:	07/12/22
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 16:49
Analytical Date.	00/02/22 10.04 DS			
Analysi. Dercent Solide:	93%			
r ercent Jolius.				

Result	Qualifier	Units	RL	MDL	Dilution Factor						
Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab											
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.246		1						
ND		ng/g	0.983		1						
ND		ng/g	0.492		1						
ND		ng/g	0.983		1						
ND		ng/g	0.246		1						
ND		ng/g	0.246		1						
ND		ng/g	0.246		1						
2.74		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.246		1						
0.328		ng/g	0.246		1						
ND		ng/g	0.246		1						
ND		ng/g	0.492		1						
ND		ng/g	0.983		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
ND		ng/g	0.492		1						
	Result ND ND	Result Qualifier ND ND ND <td>ResultQualifierUnitsNDng/g<t< td=""><td>Result Qualifier Units RL Dn - Mansfield Lab ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.983 ND ng/g 0.833 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.246 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.49</td><td>Result Qualifier Units RL MDL on - Mansfield Lab ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.983 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 N</td></t<></td>	ResultQualifierUnitsNDng/g <t< td=""><td>Result Qualifier Units RL Dn - Mansfield Lab ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.983 ND ng/g 0.833 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.246 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.49</td><td>Result Qualifier Units RL MDL on - Mansfield Lab ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.983 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 N</td></t<>	Result Qualifier Units RL Dn - Mansfield Lab ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.983 ND ng/g 0.833 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.246 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.49	Result Qualifier Units RL MDL on - Mansfield Lab ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.983 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.492 ND ng/g 0.246 ND ng/g 0.492 ND ng/g 0.492 N						

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BOXFORD, MA				Field Prep):	Not Specified
Client ID:	S-3				Date Reco	eived:	07/12/22
Lab ID:	L2237077-03				Date Colle	ected:	07/12/22 12:10
		SAMP	LE RESULTS	6			
Project Number:	MA220701				Report I	Date:	08/04/22
Project Name:	PEN-BOXFORD				Lab Nur	nber:	L2237077
					S	erial_No	0:08042215:29

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	96		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	99		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	108		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	91		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	94		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	98		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	127		20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	108		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	100		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	178	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	61		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	112		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	40		5-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	66		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	113		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	113		24-159	

			Serial_No:08042215:29		
Project Name:	PEN-BOXFORD		Lab Number:	L2237077	
Project Number:	MA220701		Report Date:	08/04/22	
		SAMPLE RESULTS			
Lab ID:	L2237077-04		Date Collected:	07/12/22 11:55	
Client ID:	S-4		Date Received:	07/12/22	
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method:	ALPHA 23528	
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 16:49	
Analytical Date:	08/02/22 16:21				
Analyst:	RS				
Percent Solids:	24%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution -	Mansfield	Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	1.81		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	1.81		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.907		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	3.63		1
Perfluorohexanoic Acid (PFHxA)	4.24		ng/g	1.81		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	3.63		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.907		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.907		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.907		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	20.4		ng/g	1.81		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	1.81		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.907		1
Perfluorooctanesulfonic Acid (PFOS)	1.02		ng/g	0.907		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.907		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	1.81		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	3.63		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/g	1.81		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	1.81		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	1.81		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	1.81		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	1.81		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	1.81		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	1.81		1

Perfluorinated Alky	/I Acids by Isotope Diluti	on - Mansfiel	d Lab					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Lab ID: Client ID: Sample Location:	L2237077-04 S-4 BOXFORD, MA		Date Collec Date Receiv Field Prep:		llected: ceived: əp:	07/12/22 11:55 07/12/22 Not Specified		
Project Number:	MA220701	SAMP		6	Report	Date:	08/04/22	
Project Name:	PEN-BOXFORD	EN-BOXFORD			Lab Nu	Serial_No:08042215:29 Lab Number: L2237077		
						Coriol No		

Acceptance Surrogate (Extracted Internal Standard) Qualifier % Recovery Criteria Perfluoro[13C4]Butanoic Acid (MPFBA) 82 61-135 Perfluoro[13C5]Pentanoic Acid (M5PFPEA) 85 58-150 Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS) 86 74-139 1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS) 96 14-167 Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA) 79 66-128 Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA) 82 71-129 Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS) 85 78-139 Perfluoro[13C8]Octanoic Acid (M8PFOA) 75-130 83 20-154 1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS) 106 72-140 Perfluoro[13C9]Nonanoic Acid (M9PFNA) 78 Perfluoro[13C8]Octanesulfonic Acid (M8PFOS) 79-136 86 Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA) 76 75-130 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS) 132 19-175 N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA) 46 31-134 61-155 Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA) 79 N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) 34-137 40 Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA) 70 54-150 Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA) 11 Q 24-159

			Serial_No:08042215:29		
Project Name:	PEN-BOXFORD		Lab Number:	L2237077	
Project Number:	MA220701		Report Date:	08/04/22	
		SAMPLE RESULTS			
Lab ID:	L2237077-04		Date Collected:	07/12/22 11:55	
Client ID:	S-4		Date Received:	07/12/22	
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method:	ALPHA 23528	
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 16:49	
Analytical Date:	08/03/22 16:09				
Analyst:	MP				
Percent Solids:	24%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isot	ope Dilution - Mansfield	Lab					
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	1.81		1	
Surrogate (Extracted Internal Sta	ndard)		% Recovery	Qualifier	Acc C	eptance riteria	
Perfluoro[13C8]Octanesulfonamide	(M8FOSA)		99			5-117	

			Serial_No:08042215:29		
Project Name:	PEN-BOXFORD		Lab Number:	L2237077	
Project Number:	MA220701		Report Date:	08/04/22	
		SAMPLE RESULTS			
Lab ID:	L2237077-05		Date Collected:	07/12/22 12:05	
Client ID:	S-5		Date Received:	07/12/22	
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method:	ALPHA 23528	
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 16:49	
Analytical Date:	08/02/22 16:37				
Analyst:	RS				
Percent Solids:	63%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.714		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.714		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.357		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.43		1	
Perfluorohexanoic Acid (PFHxA)	1.59		ng/g	0.714		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.43		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.357		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.357		1	
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.357		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	9.79		ng/g	0.714		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.714		1	
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.357		1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.357		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.357		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.714		1	
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.43		1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/g	0.714		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.714		1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.714		1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.714		1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.714		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.714		1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.714		1	
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.714		1	

Perfluorinated Alky	I Acids by Isotope Dilutio	n - Mansfiel	d Lab					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Lab ID: Client ID: Sample Location:	L2237077-05 S-5 BOXFORD, MA			Date Coll Date Rec Field Pre	ected: eived: p:	07/12/22 12:05 07/12/22 Not Specified		
Project Number:	MA220701	SAMP		6	Report	Date:	08/04/22	
Project Name:	PEN-BOXFORD				Lab Nu	mber:	L2237077	
		Serial No:08042215:29						

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	87	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	89	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	88	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	89	14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	79	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	92	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	78	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	111	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	96	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	131	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	47	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	93	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	21	5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	42	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	86	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	27	24-159

			Serial_No:08042215:29		
Project Name:	PEN-BOXFORD		Lab Number:	L2237077	
Project Number:	MA220701		Report Date:	08/04/22	
		SAMPLE RESULTS			
Lab ID:	L2237077-06		Date Collected:	07/12/22 11:45	
Client ID:	S-6		Date Received:	07/12/22	
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method:	ALPHA 23528	
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/25/22 17:45	
Analytical Date:	08/02/22 16:54				
Analyst:	RS				
Percent Solids:	53%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.878		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.878		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.439		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.76		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.878		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.76		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.439		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.439		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.439		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.878		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.878		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.439		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.439		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.439		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.878		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.76		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/g	0.878		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.878		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.878		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.878		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.878		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.878		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.878		1

		Serial_No:08042215:29						
Project Name:	PEN-BOXFORD				Lab Nun	nber:	L2237077	
Project Number:	MA220701	MA220701			Report I	Date:	08/04/22	
		SAMP	LE RESULT	5				
Lab ID:	L2237077-06				Date Colle	ected:	07/12/22 11:45	
Client ID:	S-6				Date Rece	eived:	07/12/22	
Sample Location:	BOXFORD, MA				Field Prep):	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alky	Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab							

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	81		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	85		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	86		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	93		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	80		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	80		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	86		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	78		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	99		20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	89		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	93		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	87		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	136		19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	53		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	94		61-155	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	49		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	82		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	14	Q	24-159	

			Serial_No:08042215:29			
Project Name:	PEN-BOXFORD		Lab Number:	L2237077		
Project Number:	MA220701		Report Date:	08/04/22		
		SAMPLE RESULTS				
Lab ID:	L2237077-06		Date Collected:	07/12/22 11:45		
Client ID:	S-6		Date Received:	07/12/22		
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified		
Sample Depth:						
Matrix:	Soil		Extraction Method:	ALPHA 23528		
Analytical Method:	134.LCMSMS-ID		Extraction Date:	07/25/22 17:45		
Analytical Date:	08/03/22 16:16					
Analyst:	MP					
Percent Solids:	53%					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by Isotope Diluti	on - Mansfield	d Lab					
Perfluorooctanesulfonamide (FOSA)	ND	ND		0.878		1	
Surrogate (Extracted Internal Standard)			% Recovery	Qualifier	Acc C	eptance riteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)			103			5-117	

Project Name:	PEN-BOXFORD		Lab Number:	L2237077
Project Number:	MA220701		Report Date:	08/04/22

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID
Analytical Date:	08/02/22 14:25
Analyst:	RS

Extraction Method: ALPHA 23528 Extraction Date: 07/25/22 16:49

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	01-06 Batch	n: WG1667173-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500		
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorohexanesulfonic Aci (4:2FTS)	d ND		ng/g	1.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250		
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorooctanesulfonic Acic (6:2FTS)	I ND		ng/g	0.500		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500		
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250		
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorodecanesulfonic Aci (8:2FTS)	d ND		ng/g	0.500		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.500		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500		
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500		
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500		

Project Name:	PEN-BOXFORD		Lab Number:	L2237077
Project Number:	MA220701		Report Date:	08/04/22
		Method Blank Analysis Batch Quality Control		

Analytical Method:	134,LCMSMS-ID
Analytical Date:	08/02/22 14:25
Analyst:	RS

Extraction Method: ALPHA 23528 Extraction Date: 07/25/22 16:49

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield L	_ab for sa	mple(s):	01-06	Batch:	WG1667173-1

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	66		61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	68		58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	71	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	72		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	62	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	65	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	70	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	68	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	88		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	75		72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	67	Q	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	71	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	115		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	49		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	73		61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	4	Q	5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	43		34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	66		54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	33		24-159

Serial_No:08042215:29

Project Name: Project Number:	PEN-BOXFORD MA220701	Mothod Plank Analysis	Lab Number: Report Date:	L2237077 08/04/22
		Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	134,LCMSMS-ID 08/03/22 15:54 MP		Extraction Method: Extraction Date:	ALPHA 23528 07/25/22 16:49

Parameter	Result	Qualifier	Units	RL		MDL		
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield	Lab for sa	imple(s):	01-06	Batch:	WG1667173-1	
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500				

		A	Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	125	Q	5-117	

Lab Control Sample Analysis

Batch Quality Control

Project Name: PEN-BOXFORD Project Number: MA220701 Lab Number: L2237077 Report Date: 08/04/22

LCSD LCS %Recovery RPD %Recovery %Recoverv Limits RPD Limits Parameter Qual Qual Qual Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-06 Batch: WG1667173-2 Perfluorobutanoic Acid (PFBA) 94 -71-135 -30 Perfluoropentanoic Acid (PFPeA) 94 69-132 30 --Perfluorobutanesulfonic Acid (PFBS) 98 72-128 30 --1H,1H,2H,2H-Perfluorohexanesulfonic 108 62-145 30 --Acid (4:2FTS) Perfluorohexanoic Acid (PFHxA) 97 70-132 30 --Perfluoropentanesulfonic Acid (PFPeS) 101 73-123 30 --Perfluoroheptanoic Acid (PFHpA) 95 71-131 30 --Perfluorohexanesulfonic Acid (PFHxS) 111 67-130 30 --Perfluorooctanoic Acid (PFOA) 93 69-133 30 --1H,1H,2H,2H-Perfluorooctanesulfonic 107 64-140 30 -_ Acid (6:2FTS) Perfluoroheptanesulfonic Acid (PFHpS) 70-132 30 97 --Perfluorononanoic Acid (PFNA) 92 72-129 30 --Perfluorooctanesulfonic Acid (PFOS) 95 68-136 30 --Perfluorodecanoic Acid (PFDA) 97 69-133 30 _ -1H,1H,2H,2H-Perfluorodecanesulfonic 94 65-137 30 --Acid (8:2FTS) Perfluorononanesulfonic Acid (PFNS) 95 69-125 30 --N-Methyl 95 63-144 30 -_ Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) 96 64-136 30 --Perfluorodecanesulfonic Acid (PFDS) 94 59-134 30 --67-137 Perfluorooctanesulfonamide (FOSA) 86 30 --N-Ethyl Perfluorooctanesulfonamidoacetic 99 61-139 30 --

-

69-135

-

30

Acid (NEtFOSAA)

Perfluorododecanoic Acid (PFDoA)

94

Lab Control Sample Analysis Batch Quality Control

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237077 Report Date: 08/04/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	sample(s): 01-06	Batch:	WG1667173-2				
Perfluorotridecanoic Acid (PFTrDA)	108		-		66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	98		-		69-133	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	64				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	69				58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	73	Q			74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	59				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	64	Q			66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	66	Q			71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	70	Q			78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	69	Q			75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	66				20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	71	Q			72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	70	Q			79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	64	Q			75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	66				19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	38				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	66				61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	6				5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	36				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	64				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	36				24-159

L2237077

08/04/22

Lab Control Sample Analysis

Project Name:	PEN-BOXFORD	Batch Quality Control	Lab Number:
Project Number:	MA220701		Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated s	ample(s): 01-06	Batch:	WG1667173-2				
Perfluorooctanesulfonamide (FOSA)	88		-		67-137	-		30	

Surrogate (Extracted Internal Standard)	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	116		5-117

Matrix Spike Analysis Batch Quality Control

Project Name: PEN-BOXFORD

Project Number: MA220701 Lab Number: L2237077 Report Date: 08/04/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is	otope Dilution	- Mansfield	Lab Assoc	iated sample(s):	01-06	QC Batch	ID: WG1667173	8-3 (QC Sample:	L223707	7-01	Client ID:	S-1
Perfluorobutanoic Acid (PFBA)	ND	5.22	5.25	99		-	-		71-135	-		30	
Perfluoropentanoic Acid (PFPeA)	ND	5.22	5.57	103		-	-		69-132	-		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	4.63	4.34	94		-	-		72-128	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	4.89	5.28	108		-	-		62-145	-		30	
Perfluorohexanoic Acid (PFHxA)	ND	5.22	5.44	101		-	-		70-132	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	4.91	4.94	101		-	-		73-123	-		30	
Perfluoroheptanoic Acid (PFHpA)	ND	5.22	5.05	97		-	-		71-131	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	4.77	5.40	113		-	-		67-130	-		30	
Perfluorooctanoic Acid (PFOA)	ND	5.22	5.33	102		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	4.96	5.69	105		-	-		64-140	-		30	
Perfluoroheptanesulfonic Acid	ND	4.98	4.45	89		-	-		70-132	-		30	
Perfluorononanoic Acid (PFNA)	ND	5.22	5.67	109		-	-		72-129	-		30	
Perfluorooctanesulfonic Acid (PFOS)	0.328	4.84	5.49	107		-	-		68-136	-		30	
Perfluorodecanoic Acid (PFDA)	ND	5.22	5.85	112		-	-		69-133	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	5.01	5.08	101		-	-		65-137	-		30	
Perfluorononanesulfonic Acid (PFNS)	ND	5.02	4.98	99		-	-		69-125	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	5.22	4.99	96		-	-		63-144	-		30	
Perfluoroundecanoic Acid (PFUnA)	ND	5.22	6.19	118		-	-		64-136	-		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	5.04	4.45	88		-	-		59-134	-		30	
Perfluorooctanesulfonamide (FOSA)	ND	5.22	5.29F	101		-	-		67-137	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	5.22	4.80	92		-	-		61-139	-		30	
Perfluorododecanoic Acid (PFDoA)	ND	5.22	5.41	104		-	-		69-135	-		30	

Matrix Spike Analysis

Project Name:	PEN-BOXFORD	Batch Quality Control	Lab Number:	L2237077
Project Number:	MA220701		Report Date:	08/04/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Is	otope Dilutior	n - Mansfield	Lab Associa	ated sample(s):	01-06	QC Batch	ID: WG166717	3-3	QC Sample:	L223707	77-01	Client ID:	S-1
Perfluorotridecanoic Acid (PFTrDA)	ND	5.22	5.77	111		-	-		66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	ND	5.22	5.33	102		-	-		69-133	-		30	

	MS	5	MS	SD	Acceptance	
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	229	Q			19-175	-
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	120				14-167	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	177	Q			20-154	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	109				34-137	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	101				31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	115				61-155	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	99				75-130	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	94				66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	104				71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110				78-139	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	112				54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	116				24-159	
Perfluoro[13C4]Butanoic Acid (MPFBA)	106				61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108				58-150	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	18				5-117	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	124				79-136	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102				75-130	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	107				72-140	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	113				74-139	

Lab Duplicate Analysis Batch Quality Control

Project Name: PEN-BOXFORD

Report Date:

Lab Number:

Project Number: MA220701

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution - M ID: S-2	lansfield Lab Associated sa	mple(s): 01-06 QC Ba	tch ID: WG1667	7173-4 0	QC Sample: L2237077-02 Client
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/g	NC	30
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/g	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4·2FTS)	ND	ND	ng/g	NC	30
Perfluorohexanoic Acid (PFHxA)	0.733	0.783	ng/g	7	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/g	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/g	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/g	NC	30
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	3.44	3.90	ng/g	13	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/g	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/g	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/g	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/g	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/g	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/g	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/g	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/g	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/g	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: PEN-BOXFORD

Report Date:

Lab Number: L2237077 08/04/22

Project Number: MA220701

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - M D: S-2	ansfield Lab Associated sa	mple(s): 01-06 QC B	atch ID: WG166	67173-4 Q	C Sample: L2237077-02 Clier	nt
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/g	NC	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/g	NC	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/g	NC	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/g	NC	30	

Surrogate (Extracted Internal Standard)	% Decovery	Qualifiar	% Decovery	Qualifiar	Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Quaimer	%Recovery	Quaimer	Cilicila	
Perfluoro[13C4]Butanoic Acid (MPFBA)	99		102		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	104		106		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	102		100		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	173	Q	161		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	89		99		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	96		106		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	103		99		78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	93		107		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	193	Q	180	Q	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	99		107		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109		106		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	96		101		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	255	Q	233	Q	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	90		104		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	116		118		61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	32		36		5-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	112		97		34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	110		114		54-150	

Project Name: Project Number:	PEN-BOXFORD MA220701		Lab Duplicate A Batch Quality Co	Analysis ontrol	Lab Number Report Date	: L2237077 : 08/04/22	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acid ID: S-2	s by Isotope Dilution - Ma	nsfield Lab Associated s	ample(s): 01-06 QC B	atch ID: WG16	67173-4	QC Sample: L2	2237077-02 Client
Surrogate (E	Extracted Internal Standa	rd)	%Recovery Qualifi	er %Recoverv	Qualifier	Acceptance Criteria	

U				
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PF	TEDA)	104	107	24-159

INORGANICS & MISCELLANEOUS

Serial_No:	08042215:29
Lab Number:	L2237077
Report Date:	08/04/22

Project Name: PEN-BOXFORD Project Number: MA220701

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2237077-0 S-1 BOXFORD,	1 MA					Date (Date F Field F	Collected: Received: Prep:	07/12/22 12:25 07/12/22 Not Specified	5
Sample Depth: Matrix:	Soil					Dilution	Dete	-		
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mar	nsfield Lab									
Solids, Total	91.3		%	0.100		1	-	07/28/22 21:1:	2 121,2540G	JM

Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237077	
Project Number:	MA220701						Repo	rt Date:	08/04/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237077-0	2					Date	Collected:	07/12/22 12:20)
Client ID:	S-2	S-2						Received: (07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mar	nsfield Lab									
Solids, Total	88.1		%	0.100		1	-	07/28/22 21:12	2 121,2540G	JM

Serial No:08042215:29

Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237077	
Project Number:	MA220701						Repo	rt Date:	08/04/22	
				SAMPLE	RESUL	ГS				
Lab ID:	L2237077-0	3					Date	Collected:	07/12/22 12:10	
Client ID:	S-3						Date	Received:	07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Ma	nsfield Lab									
Solids, Total	92.9		%	0.100		1	-	07/28/22 21:1	2 121,2540G	JM

	Serial_No:0804								042215:29	
Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237077	
Project Number:	MA220701						Repo	rt Date:	08/04/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237077-0	4					Date (Collected:	07/12/22 11:55	
Client ID:	S-4				Date I	Date Received: 07/12/22				
Sample Location:	BOXFORD,	MA					Field I	Prep:	Not Specified	
Sample Depth:	0									
Matrix:	Soll					B 11 (1	D (
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mar	nsfield Lab									
Solids, Total	24.4		%	0.100		1	-	07/28/22 21:1	2 121,2540G	JM

Serial No:08042215:29

Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237077	
Project Number:	MA220701						Repo	rt Date:	08/04/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237077-0	5					Date	Collected:	07/12/22 12:05	i
Client ID:	S-5	S-5						Received:	07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mar	nsfield Lab									
Solids, Total	62.8		%	0.100		1	-	07/28/22 21:12	2 121,2540G	JM

Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237077	
Project Number:	MA220701						Repo	rt Date:	08/04/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237077-0	6					Date	Collected:	07/12/22 11:45	i
Client ID:	S-6						Date	Received:	07/12/22	
Sample Location:	BOXFORD, MA				Field	Prep:	Not Specified			
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mai	nsfield Lab									
Solids, Total	52.6		%	0.100		1	-	07/28/22 21:12	2 121,2540G	JM

10

Project Name: Project Number:	PEN-BOXFORD MA220701	La	b Duplicate Analy Batch Quality Control	Lab Number: Report Date:		L2237077 08/04/22	
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Man	sfield Lab Associated sample(s	s): 01-06 QC Batch ID	: WG1668722-1 QC Sa	mple: L2237	077-01 Clie	ent ID: S-1	

91.4

%

0

91.3

Solids, Total

Project Name: PEN-BOXFORD Project Number: MA220701

Serial_No:08042215:29 Lab Number: L2237077 *Report Date:* 08/04/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2237077-01A	Plastic 8oz unpreserved	А	NA		4.8	Y	Absent		A2-537-ISOTOPE(14)
L2237077-01B	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2237077-02A	Plastic 8oz unpreserved	А	NA		4.8	Y	Absent		A2-537-ISOTOPE(14)
L2237077-02B	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2237077-03A	Plastic 8oz unpreserved	А	NA		4.8	Y	Absent		A2-537-ISOTOPE(14)
L2237077-03B	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2237077-04A	Plastic 8oz unpreserved	А	NA		4.8	Y	Absent		A2-537-ISOTOPE(14)
L2237077-04B	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2237077-05A	Plastic 8oz unpreserved	А	NA		4.8	Y	Absent		A2-537-ISOTOPE(14)
L2237077-05B	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)
L2237077-06A	Plastic 8oz unpreserved	А	NA		4.8	Y	Absent		A2-537-ISOTOPE(14)
L2237077-06B	Plastic 2oz unpreserved for TS	А	NA		4.8	Y	Absent		A2-TS(7)

Project Name: PEN-BOXFORD

Project Number: MA220701

Serial_No:08042215:29 Lab Number: L2237077 Report Date: 08/04/22

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFIA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUNA	2058-94-8
Perfluorodecanoic Acid		335-76-2
Periluorononanoic Acid		375-95-1
Periluorobontanoic Acid		333-07-1
		373-03-9
Perfluoronentanoic Acid		2706 00 2
	PERA	27.00-90-3
		515-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6
·		

Project Number: MA220701

Lab Number: L2237077

Report Date: 08/04/22

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: MA220701

Lab Number: L2237077 Report Date: 08/04/22

Footnotes

.

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Project Number: MA220701

Serial_No:08042215:29

Lab Number: L2237077

Report Date: 08/04/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: PEN-BOXFORD Project Number: MA220701

 Lab Number:
 L2237077

 Report Date:
 08/04/22

REFERENCES

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:08042215:29

Агрна	CHAIN (OF CL	JSTO	DY,	PAGE_1	_of/	Date Rec'	d in Lab:	7/12	/22	ALPH	A Job #:	L223707	7
a Walkup Drive	320 Forbes Blvd	Projec	t Informa	tion			Report I	nformation	ı - Data I	Deliverables	Billing	Informat	tion	Í
Tel: 508-898-92	1581 Mansfield, MA 02048 20 Tel: 508-822-9300	Project	Name: P	EN-Bo;	XFORD		ADEX		EMAIL		A Same	as Client in	nfo PO # MA22	0701
Client Information	n - Charles Charles - Charles	Project	Location:	Boxfor	rd, MA		Regulato	ory Requir	ements	& Project	Informatio	on Requir	rements	
Client: CHC	I	Project	#: MAZ	2070)			Yes IN	No MA MCP	Analytical	Methods	C Ye	s 🗆 No C	T RCP Analytical Met	hods
Address: 8 Ple	asant St.	Project	Manager:	Brian	Moore			lo GW1 Sta	ndards (In	ed on this SDG fo Required for	IP (Require Metals & El	d for MCP I PH with Tar	Inorganics) rgets)	
S. Na	tick, MA 01760	ALPH/	Quote #:	see Mich	ael Cha	ing	 Yes IN Other St 	to NPDES F ate /Fed Pr	RGP			Critoria R	CS-1	
Phone: 508 315	3146	Turn-	Around Ti	me	14 L A		1	/ /	9 / /	. / / /	17		111	
Additional Pr 21 Throject	oject Information:	Date	bdard Due:	RUSH (ant)	r confirmed if pro-a	oproved)	ANALYSIS DABU DE24 D5242	DMCP 13 DMCP 14 DDC	langes & Targets L Ranges CPp	L PEST Uant Only D Fingerprint S > U			SAMPLE INF Filtration Field Lab to do Preservation	FO
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll	ection Time	Sample Matrix	Sampler	Voc:	METALS WETALS	HO HO	PEA D	//	//,	Lab to do	
37077-01	5-1		7/12/2	12:25	SOIL	SJH			1-1-		f		Sample Commen	ts -
-02	5-2			12:30	1	1							CARL / HOLD	
-03	5-3			12:00									EXTRACT/ MOCIL	
-04	6-4			11.45								-	Extract/ MULL	1
- 05	6-6			12-15						X		_	Extract/Holl	2 6
61	(h			10.00						X			Extract/Haci	D
	5-0			[(- 45		1				X			Extract/HOU	20
														+
Container Type 	Preservative A≓ None B= HCl				Conta	iner Type				P				+
r- viai 3= Glass 3= Bacteria cup 2= Cuber 5= Cuber	C= HNO3 D= H2SO4 E= NaOH F= MeOH	Relinqu	ished By:		Pre	servative /Time		Received B	V:	A	Time	1000000		
E= Encore B= BOD Bottle age 47 of 47	G* NaHSO4 H = Na ₂ S ₂ O3 I= Ascorbic Acid J = NH ₄ Cl K= Zn Acctate O= Other	and the	Mart	it	7/13/2	14:58	1ª	The	DA	1/2/2 7/2/2 7/12/2	216.55	All sample Alpha's Te See reven	es submitted are subje erms and Conditions. se side.	ect to

ANALYTICAL REPORT

Lab Number:	L2237076
Client:	CarriageHouse Consulting Inc. 8A Pleasant Street South Natick, MA 01760
ATTN:	Brian Moore
Phone:	(508) 315-3146
Project Name:	PEN-BOXFORD
Project Number:	MA220701
Report Date:	07/22/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:07222216:45

Project Name:PEN-BOXFORDProject Number:MA220701

 Lab Number:
 L2237076

 Report Date:
 07/22/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2237076-01	B-1	SOIL	BOXFORD, MA	07/11/22 13:30	07/12/22
L2237076-02	B-2	SOIL	BOXFORD, MA	07/11/22 15:15	07/12/22

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237076 Report Date: 07/22/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

PEN-BOXFORD Project Name: Project Number: MA220701

Lab Number: L2237076 **Report Date:** 07/22/22

Case Narrative (continued)

Perfluorinated Alkyl Acids by Isotope Dilution

WG1663825-1R and WG1663825-2R: These samples were re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

WG1663825-1R,WG1663825-1R MeOH, WG1663825-2R, and WG1663825-2R MeOH: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1663825-2: The Extracted Internal Standard recovery for the WG1663825-2 LCS, associated with L2237076-01 and -02, is below the acceptance criteria (less than 5%) for perfluoro[13c8]octanesulfonamide (m8fosa) (4%); however, all associated target analytes are within LCS criteria; therefore, no further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Hoi Dais Darian Dailey

Title: Technical Director/Representative

Date: 07/22/22

ORGANICS

SEMIVOLATILES

			Serial_No:	07222216:45
Project Name:	PEN-BOXFORD		Lab Number:	L2237076
Project Number:	MA220701		Report Date:	07/22/22
		SAMPLE RESULTS		
Lab ID:	L2237076-01		Date Collected:	07/11/22 13:30
Client ID:	B-1		Date Received:	07/12/22
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/17/22 10:02
Analytical Date:	07/18/22 06:22			
Analyst:	SG			
Percent Solids:	96%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.477		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.477		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.239		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.955		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.477		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.955		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.239		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.239		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.239		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.477		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.477		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.239		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.239		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.239		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.477		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.955		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid	ND		ng/g	0.477		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.477		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.477		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.477		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.477		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.477		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.477		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.477		1

Perfluorinated Alky	I Acids by Isotope Dilution	on - Mansfiel	d Lab					
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Lab ID: Client ID: Sample Location:	L2237076-01 B-1 BOXFORD, MA				Date Coll Date Rec Field Pre	ected: eived: p:	07/11/22 13:30 07/12/22 Not Specified	
Project Number:	MA220701	SAMP		6	Report	Date:	07/22/22	
Project Name:	PEN-BOXFORD				Lab Nu	mber:	L2237076	
					C	Sorial No	v0700016·15	

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	104	61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96	74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	124	14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103	66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	102	71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94	78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	107	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	152	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	108	72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	112	79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	158	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	91	31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	105	61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	101	5-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86	34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91	54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78	24-159	

			Serial_No:	07222216:45
Project Name:	PEN-BOXFORD		Lab Number:	L2237076
Project Number:	MA220701		Report Date:	07/22/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237076-02 B-2 BOXFORD, MA		Date Collected: Date Received: Field Prep:	07/11/22 15:15 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 134,LCMSMS-ID 07/18/22 06:55 SG 100%		Extraction Method: Extraction Date:	ALPHA 23528 07/17/22 10:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.478		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.478		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.239		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	0.955		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.478		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	0.955		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.239		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.239		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.239		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.478		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.478		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.239		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.239		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.239		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.478		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	0.955		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.478		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.478		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.478		1
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.478		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.478		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.478		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.478		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.478		1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BOXFORD, MA				Field Prep:		Not Specified
Client ID:	B-2				Date Recei	ived:	07/12/22
Lab ID:	L2237076-02				Date Collec	cted:	07/11/22 15:15
		SAMP	LE RESULT	S			
Project Number:	MA220701				Report D	ate:	07/22/22
Project Name:	PEN-BOXFORD				Lab Num	ber:	L2237076
					Se	rial_No	0:07222216:45

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	102	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	97	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	95	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	116	14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	105	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	105	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	93	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	102	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	124	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	102	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	101	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	104	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	128	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	89	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	108	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	25	5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	84	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	104	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	68	24-159

Project Name:	PEN-BOXFORD			Lab Number:	L2237076
Project Number:	MA220701			Report Date:	07/22/22

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID
Analytical Date:	07/18/22 02:46
Analyst:	SG

Extraction Method: ALPHA 23528 Extraction Date: 07/17/22 10:02

Parameter	Result	Qualifier	Units	RL	MDL	
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	01-02 Bate	ch: WG1663825-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500		
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorohexanesulfonic Acia (4:2FTS)	d ND		ng/g	1.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250		
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.500		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500		
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250		
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	d ND		ng/g	0.500		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.500		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500		
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500		
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500		

Project Name:	PEN-BOXFORD		Lab Number:	L2237076
Project Number:	MA220701		Report Date:	07/22/22
		Method Blank Analysis Batch Quality Control		

Analytical Method:	134,LCMSMS-ID
Analytical Date:	07/18/22 02:46
Analyst:	SG

Extraction Method: ALPHA 23528 Extraction Date: 07/17/22 10:02

Parameter	Result	Qualifier	Units	RL		MDL	
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield L	_ab for sa	mple(s):	01-02	Batch:	WG1663825-1

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	53	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	51	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	60	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	52		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	57	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	59	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	59	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	59	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	58		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	58	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	61	Q	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	56	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	63		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	38		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	53	Q	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	5		5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	34		34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	46	Q	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	18	Q	24-159

Serial_No:07222216:45

Project Name:	PEN-BOXFORD					Lab Number:	L2237076
Project Number:	MA220701					Report Date:	07/22/22
		Metho Batc	d Blank h Quality	Analysis Control			
Analytical Method: Analytical Date: Analyst:	134,LCMSMS-ID 07/21/22 13:07 MP					Extraction Method: Extraction Date:	ALPHA 23528 07/17/22 10:02
Parameter		Result	Qualifier	Units	RL	MDL	

Perfluorinated Alkyl Acids by Isotope R	Dilution - Man	sfield Lab for sam	ple(s): 01-0	2 Batch:	WG1663825-1
Perfluorooctanesulfonamide (FOSA)	ND	ng/g	0.500		

		Acceptance			
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	Criteria		
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	145	Q	5-117		

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2237076 Report Date: 07/22/22

LCSD LCS %Recovery RPD %Recovery %Recoverv Limits RPD Limits Parameter Qual Qual Qual Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01-02 Batch: WG1663825-2 Perfluorobutanoic Acid (PFBA) 89 -71-135 -30 Perfluoropentanoic Acid (PFPeA) 89 69-132 30 --Perfluorobutanesulfonic Acid (PFBS) 92 72-128 30 --1H,1H,2H,2H-Perfluorohexanesulfonic 62-145 30 96 --Acid (4:2FTS) Perfluorohexanoic Acid (PFHxA) 88 70-132 30 --Perfluoropentanesulfonic Acid (PFPeS) 96 73-123 30 --Perfluoroheptanoic Acid (PFHpA) 91 71-131 30 --Perfluorohexanesulfonic Acid (PFHxS) 106 67-130 30 --Perfluorooctanoic Acid (PFOA) 94 69-133 30 --1H,1H,2H,2H-Perfluorooctanesulfonic 96 64-140 30 -_ Acid (6:2FTS) Perfluoroheptanesulfonic Acid (PFHpS) 70-132 30 92 --Perfluorononanoic Acid (PFNA) 90 72-129 30 --Perfluorooctanesulfonic Acid (PFOS) 100 68-136 30 --Perfluorodecanoic Acid (PFDA) 94 69-133 30 _ -1H,1H,2H,2H-Perfluorodecanesulfonic 97 65-137 30 --Acid (8:2FTS) Perfluorononanesulfonic Acid (PFNS) 94 69-125 30 --N-Methyl 63-144 30 89 -_ Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA) Perfluoroundecanoic Acid (PFUnA) 82 64-136 30 --Perfluorodecanesulfonic Acid (PFDS) 86 59-134 30 --67-137 Perfluorooctanesulfonamide (FOSA) 100 30 --N-Ethyl Perfluorooctanesulfonamidoacetic 83 61-139 30 --Acid (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) 92 69-135 30 --

Lab Control Sample Analysis Batch Quality Control

Batc

Project Name:PEN-BOXFORDProject Number:MA220701

 Lab Number:
 L2237076

 Report Date:
 07/22/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	 Mansfield Lab 	Associated	sample(s): 01-02	Batch:	WG1663825-2				
Perfluorotridecanoic Acid (PFTrDA)	108		-		66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	110		-		69-133	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	53	Q			61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	52	Q			58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	60	Q			74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	55				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	59	Q			66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	60	Q			71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	60	Q			78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	59	Q			75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	65				20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	56	Q			72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	58	Q			79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	54	Q			75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	58				19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	41				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	55	Q			61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	4	Q			5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	39				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	49	Q			54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	19	Q			24-159

L2237076

07/22/22

Lab Control Sample Analysis

Project Name:	PEN-BOXFORD	Batch Quality Control	Lab Number:
Project Number:	MA220701		Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recove	ery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated sa	ample(s): (01-02	Batch:	WG1663825-2				
Perfluorooctanesulfonamide (FOSA)	105		-			67-137	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	153	Q			5-117	

Matrix Spike Analysis Batch Quality Control

PEN-BOXFORD Bat

Project Number: MA220701

Project Name:

 Lab Number:
 L2237076

 Report Date:
 07/22/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
Perfluorinated Alkyl Acids by Is Sample	sotope Dilution	- Mansfield	Lab Associa	ated sample(s):	01-02	QC Batch	ID: WG1663825-3	QC Sample:	L2237075-01	Client ID: MS
Perfluorobutanoic Acid (PFBA)	ND	8.44	7.94	91		-	-	71-135	-	30
Perfluoropentanoic Acid (PFPeA)	ND	8.44	8.30	90		-	-	69-132	-	30
Perfluorobutanesulfonic Acid (PFBS)	ND	7.5	6.67	89		-	-	72-128	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	7.92	7.13	90		-	-	62-145	-	30
Perfluorohexanoic Acid (PFHxA)	1.57	8.44	9.20	90		-	-	70-132	-	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	7.95	7.49	94		-	-	73-123	-	30
Perfluoroheptanoic Acid (PFHpA)	ND	8.44	8.00	90		-	-	71-131	-	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	7.72	8.24	107		-	-	67-130	-	30
Perfluorooctanoic Acid (PFOA)	ND	8.44	7.78	89		-	-	69-133	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	12.0	8.04	22.4	129		-	-	64-140	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	8.06	7.49	93		-	-	70-132	-	30
Perfluorononanoic Acid (PFNA)	ND	8.44	8.07	96		-	-	72-129	-	30
Perfluorooctanesulfonic Acid (PFOS)	ND	7.84	7.91	97		-	-	68-136	-	30
Perfluorodecanoic Acid (PFDA)	ND	8.44	7.66	91		-	-	69-133	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	8.11	7.81F	96		-	-	65-137	-	30
Perfluorononanesulfonic Acid (PFNS)	ND	8.12	7.32	90		-	-	69-125	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	8.44	8.39	99		-	-	63-144	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	8.44	7.21	85		-	-	64-136	-	30
Perfluorodecanesulfonic Acid (PFDS)	ND	8.16	5.99	73		-	-	59-134	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtEOSAA)	ND	8.44	8.46	100		-	-	61-139	-	30
Perfluorododecanoic Acid (PFDoA)	ND	8.44	8.07	96		-	-	69-135	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	8.44	5.81	69		-	-	66-139	-	30

Matrix Spike Analysis

Project Name: Project Number:	PEN-BOXFORI MA220701)	Batch Quality Control Lab Number: Report Date:								L2 07	2237076 7/22/22	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids	by Isotope Dilution	n - Mansfield	d Lab Assoc	ciated sample(s):	: 01-02	QC Batch	ID: WG166382	5-3	QC Sample:	L22370	75-01	Client ID:	MS

Sample									
Perfluorotetradecanoic Acid (PFTA)	ND	8.44	8.48	100	-	-	69-133	-	30

	MS	5	MS	D	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
- 1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	92				19-175
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	86				14-167
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	91				20-154
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	27	Q			34-137
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	40				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	77				61-155
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	81				75-130
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	85				66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	85				71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	78				78-139
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	57				54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	5	Q			24-159
Perfluoro[13C4]Butanoic Acid (MPFBA)	83				61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	78				58-150
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	81				79-136
Perfluoro[13C8]Octanoic Acid (M8PFOA)	83				75-130
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	78				72-140
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	81				74-139

Lab Duplicate Analysis Batch Quality Control

Project Name: PEN-BOXFORD

Report Date:

Lab Number:

Project Number: MA220701

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - ID: B-1	Mansfield Lab Associated sa	ample(s): 01-02 QC Ba	atch ID: WG166	3825-4	QC Sample:	L2237076-01	Client
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/g	NC		30	
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/g	NC		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/g	NC		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	ND	ND	ng/g	NC		30	
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/g	NC		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/g	NC		30	
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/g	NC		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/g	NC		30	
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/g	NC		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	ND	ND	ng/g	NC		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/g	NC		30	
Perfluorononanoic Acid (PFNA)	ND	ND	ng/g	NC		30	
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/g	NC		30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/g	NC		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/g	NC		30	
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/g	NC		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/g	NC		30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/g	NC		30	
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/g	NC		30	
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/g	NC		30	

Lab Duplicate Analysis Batch Quality Control

Project Name: PEN-BOXFORD

Report Date: 07

Lab Number:

L2237076 07/22/22

Project Number: MA220701

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by Isotope Dilution - Mans ID: B-1	field Lab Associated s	ample(s): 01-02 QC Ba	tch ID: WG16	63825-4 0	QC Sample: L2237076-01 C	lient
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/g	NC	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/g	NC	30	
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/g	NC	30	
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/g	NC	30	

Surrogate (Extracted Internal Standard)	%Recovery Quality	ier %Recovery Quali	Acceptance fier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	104	100	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	95	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96	95	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	124	124	14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103	102	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	102	101	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94	92	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	107	101	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	152	136	20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	108	98	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	112	106	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	104	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	158	154	19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	91	78	31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	105	101	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	101	102	5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86	84	34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91	86	54-150

24-159

Project Name: Project Number:	PEN-BOXFORD MA220701		Lab Duplicate A Batch Quality C	Analysis Control		Lab Numbo Report Dat	er: L22 e: 07/	237076 22/22
Parameter		Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acio ID: B-1	ds by Isotope Dilution - Mans	field Lab Associated sar	mple(s): 01-02 QC	Batch ID: WG16	63825-4 (QC Sample: I	_2237076-01	Client
Surrogate (I	Extracted Internal Standard	ł)	%Recovery Qualif	ier %Recovery	Qualifier	Acceptance Criteria		

78

74

.

- -

Perfluoro[1,2-13C2]Tetradecanoic Acid	(M2PFTEDA)
--------------------	---------------------	------------

ANALYTICAL

INORGANICS & MISCELLANEOUS

Serial	No:07222216:45
oona.	

Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237076	
Project Number:	MA220701						Repo	rt Date:	07/22/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237076-0	1					Date	Collected:	07/11/22 13:30)
Client ID:	B-1						Date	Received: (07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mar	nsfield Lab									
Solids, Total	96.1		%	0.100		1	-	07/15/22 18:08	8 121,2540G	JM

Serial 10.07222210.45

Project Name:	PEN-BOXF	ORD					Lab N	lumber: _l	L2237076	
Project Number:	MA220701						Repo	rt Date:	07/22/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237076-0	2					Date	Collected: (07/11/22 15:15	
Client ID:	B-2						Date	Received: (07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep: I	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Mar	nsfield Lab									
Solids, Total	99.7		%	0.100		1	-	07/15/22 18:08	3 121,2540G	JM

Project Name: Project Number:	PEN-BOXFORD MA220701	Lab Duplicate Analysis Batch Quality Control Lab Rep					L2237076
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Mansfield Lab	Associated sample(s): 01-02	QC Batch ID: WG1663497-1	QC Sample: L	2237075-01 Cli	ient ID: DUP Sample	
Solids, Total	56	8 57.8	%	2	10	

Project Name:PEN-BOXFORDProject Number:MA220701

Serial_No:07222216:45 *Lab Number:* L2237076 *Report Date:* 07/22/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2237076-01A	Plastic 8oz unpreserved	А	NA		5.1	Y	Absent		A2-537-ISOTOPE(14)
L2237076-01B	Plastic 2oz unpreserved for TS	А	NA		5.1	Y	Absent		A2-TS(7)
L2237076-02A	Plastic 8oz unpreserved	А	NA		5.1	Y	Absent		A2-537-ISOTOPE(14)
L2237076-02B	Plastic 2oz unpreserved for TS	А	NA		5.1	Y	Absent		A2-TS(7)

YES

Project Number: MA220701

Serial_No:07222216:45 Lab Number: L2237076 Report Date: 07/22/22

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PENA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Periluoroneptanoic Acid		375-85-9
Periluoronexanoic Acid		307-24-4
Periluoropentanoic Acid	DEDA	2706-90-3
	FFDA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H.1H.2H.2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H.2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H.2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
	NETEOSE	1601-00-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeEOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NETEOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
		2000 01 0
		10050 10 0
2,3,3,3-Tetranuolo-2-[1,1,2,2,3,3,3-Heplanuolopropoxy]-Flopanoic Aciu		13252-13-6
	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Number: MA220701

Lab Number: L2237076

Report Date: 07/22/22

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
NA	- Maint Spike Sample Duplicate: Refer to MS.
NA	
	 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NK	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Project Number: MA220701

Lab Number: L2237076 Report Date: 07/22/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

^{1 00011010}

Project Number: MA220701

Serial_No:07222216:45

Lab Number: L2237076

Report Date: 07/22/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name: PEN-BOXFORD Project Number: MA220701

 Lab Number:
 L2237076

 Report Date:
 07/22/22

REFERENCES

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

10										S	erial_No:0)7222216:45	
	CHAIN O	F CUSTO	DY	PAGE_	_OF	Date Rec'd	in Lab:	7/12	122	ALP	HA Job #:	L223707	6
8 Walkup Drive	320 Forbes Blvd	Project Informa	ition			Report In	formation	- Data De	eliverables	Billin	ng Informa	tion	
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048 220 Tel: 508-822-9300	Project Name:	H-BO	xford		ADEx		EMAIL		XSan	ne as Client i		10
Client Informatio	on	Project Location: E	oxfor	d, MA		Regulator	y Require	ements	& Projec	t Informa	tion Regui	rements	101
Client: CHCI		Project #: MA2	20101			XYes IN	MAMCP	Analytical M	lethods		Yes 🗆 No 🕻	CT RCP Analytical Metho	ds
Address: 8 Rea	sout st. s	Project Manager:	. Hoor	-e		Yes I No	GW1 Star	ke Require Idards (Info	d on this SD Required fo	G? (Requi r Metals &	red for MCP EPH with Ta	Inorganics)	
Natick	MA, 01760	ALPHA Quote #:				Q Yes Q No	NPDES R	GP	5998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998		0	((-1.1-1/C-1	
Phone: (508-3	15-3146	Turn-Around Ti	me		aning		/ /	ogram ⊷///	11	/ / /	Criteria <u>N</u>	CGW-1/5-1	1
Additional P 215 projec	roject Information:	Date Due:	RUSH (m)	oontinned it pre-a - DAY T	AT	ANALYSIS ABN D 524 D 524.2	UMCP 13 UMCP 14 URCO	nges & Targets L Ranges Only	L PEST Cars C Ranges Only lant Only C Fingernar	r 		SAMPLE INFO Filtration Field Lab to do	TOTAL # 80
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll	ection Time	Sample Matrix	Sampler	VOC: D	METALS: PH.	PH: DRa	PP. Con	[]]		Lab to do	TTLE
37076-01	B-1	7/11/22	13:30	501	STH		1-1-	14/4	X	++	+++	Sample Comments	s
-02	13-2	7/11/22	15:15	Sal	STL				Ŷ		+ + +		d
				20.0	5011				^	++-			3
Container Type	Preservative		Г	Contai	ner Type			_	0				
A≃ Amber glass V≃ Vial G≃ Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄			Pre	servative				Δ				
D= Gactena cup C= Cube D= Other E= Encore D= BOD Bottle	E = NaOH F= MeOH G = NaHSO4 H = Na ₂ S ₂ O5 I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other		y.	Date 7/13/3 7/13/3	/Time 3. 4:48 /845	Mige	Received By		Dat 7/10/2 7/12/2	a/Time 2 16 58 2 784	All sample Alpha's Te See reven	es submitted are subject rms and Conditions. se side.	to
age 33 of 33				1140	5 5005	Jan	201	se	7/12/	2 20:00	FORM NO: 01	1-01 (rev. 12-Mar-2012)	

ANALYTICAL REPORT

Lab Number:	L2237075
Client:	CarriageHouse Consulting Inc. 8A Pleasant Street South Natick, MA 01760
ATTN:	Brian Moore
Phone:	(508) 315-3146
Project Name:	PEN-BOXFORD
Project Number:	MA220701
Report Date:	07/25/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:07252211:02

Project Name: Project Number	PEN-BOXFORD MA220701			Lab Number: Report Date:	L2237075 07/25/22
Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2237075-01	WC-1	SOIL	BOXFORD, MA	07/12/22 13:40	07/12/22

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237075 Report Date: 07/25/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

L2237075

07/25/22

Lab Number:

Report Date:

Project Name:PEN-BOXFORDProject Number:MA220701

Case Narrative (continued)

Perfluorinated Alkyl Acids by Isotope Dilution

L2237075-01: The Extracted Internal Standard recoveries are less than 5% for perfluoro[1,2-

13c2]tetradecanoic acid (m2pfteda) (4%); however, the results are confirmed by the batch QC performed on this sample; therefore, re-extraction was not required.

L2237075-01: The MeOH fraction of the extraction is reported for perfluorooctanesulfonamide (fosa) due to better extraction efficiency of the perfluoro[13c8]octanesulfonamide (m8fosa) Extracted Internal Standard. L2237075-01, WG1663825-1/R, WG1663825-2/R, and WG1663825-3: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

WG1663825-1R and WG1663825-2R: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

WG1663825-2: The Extracted Internal Standard recovery for the WG1663825-2 LCS, associated with L2237075-01, is below the acceptance criteria (less than 5%) for perfluoro[13c8]octanesulfonamide (m8fosa) (4%); however, all associated target analytes are within LCS criteria; therefore, no further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Alycia Mogayzel

Authorized Signature:

Title: Technical Director/Representative

Date: 07/25/22

ORGANICS

SEMIVOLATILES

			Serial_No:	07252211:02
Project Name:	PEN-BOXFORD		Lab Number:	L2237075
Project Number:	MA220701		Report Date:	07/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237075-01 WC-1 BOXFORD, MA		Date Collected: Date Received: Field Prep:	07/12/22 13:40 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 134,LCMSMS-ID 07/18/22 05:49 SG 57%		Extraction Method: Extraction Date:	ALPHA 23528 07/17/22 10:02

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	on - Mansfiel	d Lab				
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.850		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.850		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.425		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/g	1.70		1
Perfluorohexanoic Acid (PFHxA)	1.57		ng/g	0.850		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.70		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.425		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.425		1
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.425		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	12.0		ng/g	0.850		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.850		1
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.425		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.425		1
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.425		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/g	0.850		1
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.70		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/g	0.850		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.850		1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.850		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.850		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.850		1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.850		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.850		1

Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Sample Depth:							
Sample Location:	BOXFORD, MA				Field Pre	p:	Not Specified
Client ID:	WC-1				Date Rec	eived:	07/12/22
Lab ID:	L2237075-01				Date Coll	ected:	07/12/22 13:40
		SAMP	LE RESULT	6			
Project Number:	MA220701				Report	Date:	07/25/22
Project Name:	PEN-BOXFORD				Lab Nu	mber:	L2237075
					5	Serial_No	0:07252211:02

Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	82		61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	76		58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	79		74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	76		14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	84		66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	83		71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	77	Q	78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	84		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	87		20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	79		72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	84		79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	80		75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	87		19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	36		31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	78		61-155	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	29	Q	34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	65		54-150	
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	4	Q	24-159	

			Serial_No:	:07252211:02
Project Name:	PEN-BOXFORD		Lab Number:	L2237075
Project Number:	MA220701		Report Date:	07/25/22
		SAMPLE RESULTS		
Lab ID:	L2237075-01		Date Collected:	07/12/22 13:40
Client ID:	WC-1		Date Received:	07/12/22
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	: ALPHA 23528
Analytical Method:	134,LCMSMS-ID		Extraction Date:	07/17/22 10:02
Analytical Date:	07/23/22 20:37			
Analyst:	SG			
Percent Solids:	57%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by Isotope Dilution	n - Mansfiel	d Lab				
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.850		1
Surrogate (Extracted Internal Standard)			% Recovery	Qualifier	Acc C	eptance riteria
Perfluoro[13C8]Octanesulfonamide (M8FOSA)			67			5-117

Project Name:	PEN-BOXFORD		Lab Number:	L2237075
Project Number:	MA220701		Report Date:	07/25/22

Method Blank Analysis Batch Quality Control

Analytical Method:	134,LCMSMS-ID
Analytical Date:	07/18/22 02:46
Analyst:	SG

Extraction Method:ALPHA 23528Extraction Date:07/17/22 10:02

Parameter	Result	Qualifier	Units	RL	MD	L
Perfluorinated Alkyl Acids by Isotope	Dilution -	Mansfield	Lab for	sample(s):	01 Batch:	WG1663825-1
Perfluorobutanoic Acid (PFBA)	ND		ng/g	0.500		
Perfluoropentanoic Acid (PFPeA)	ND		ng/g	0.500		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorohexanesulfonic Acia (4:2FTS)	ND		ng/g	1.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/g	0.500		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/g	1.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/g	0.250		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/g	0.250		
Perfluorooctanoic Acid (PFOA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/g	0.500		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/g	0.500		
Perfluorononanoic Acid (PFNA)	ND		ng/g	0.250		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/g	0.250		
Perfluorodecanoic Acid (PFDA)	ND		ng/g	0.250		
1H,1H,2H,2H-Perfluorodecanesulfonic Acia (8:2FTS)	I ND		ng/g	0.500		
Perfluorononanesulfonic Acid (PFNS)	ND		ng/g	1.00		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	c ND		ng/g	0.500		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/g	0.500		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/g	0.500		
Perfluorooctanesulfonamide (FOSA)	ND		ng/g	0.500		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/g	0.500		
Perfluorododecanoic Acid (PFDoA)	ND		ng/g	0.500		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/g	0.500		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/g	0.500		

Project Name:	PEN-BOXFORD		Lab Number:	L2237075
Project Number:	MA220701		Report Date:	07/25/22
		Method Blank Analysis Batch Quality Control		

Analytical Method:	134,LCMSMS-ID
Analytical Date:	07/18/22 02:46
Analyst:	SG

Extraction Method:ALPHA 23528Extraction Date:07/17/22 10:02

Parameter	Result	Qualifier	Units	RL		MDL
Perfluorinated Alkyl Acids by Isotop	e Dilution -	Mansfield L	.ab for sa	mple(s):	01	Batch: WG1663825-1

Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	53	Q	61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	51	Q	58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	60	Q	74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	52		14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	57	Q	66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	59	Q	71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	59	Q	78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	59	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	58		20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	58	Q	72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	61	Q	79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	56	Q	75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	63		19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	38		31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	53	Q	61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	5		5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	34		34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	46	Q	54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	18	Q	24-159

Serial_No:07252211:02

Project Name: Project Number:	PEN-BOXFORD MA220701				Lab Number: Report Date:	L2237075 07/25/22
		Metho Bate	od Blank ch Quality	Analysis Control		
Analytical Method: Analytical Date: Analyst:	134,LCMSMS-ID 07/21/22 13:07 MP				Extraction Method: Extraction Date:	ALPHA 23528 07/17/22 10:02
Parameter	Allad Asida by lastar	Result	Qualifier	Units	MDL	22025 4 D

Perriuorooctanesuironamide (FOSA) ND ng/g 0.500	Perfluorooctanesulfonamide (FOSA)	ND	ng/g	0.500	
---	-----------------------------------	----	------	-------	--

Surrogate (Extracted Internal Standard)	%Recovery	ہ Qualifier	Acceptance Criteria
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	145	Q	5-117

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2237075 Report Date: 07/25/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	- Mansfield Lab	Associated	sample(s): 01	Batch:	WG1663825-2				
Perfluorobutanoic Acid (PFBA)	89		-		71-135	-		30	
Perfluoropentanoic Acid (PFPeA)	89		-		69-132	-		30	
Perfluorobutanesulfonic Acid (PFBS)	92		-		72-128	-		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	96		-		62-145	-		30	
Perfluorohexanoic Acid (PFHxA)	88		-		70-132	-		30	
Perfluoropentanesulfonic Acid (PFPeS)	96		-		73-123	-		30	
Perfluoroheptanoic Acid (PFHpA)	91		-		71-131	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	106		-		67-130	-		30	
Perfluorooctanoic Acid (PFOA)	94		-		69-133	-		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	96		-		64-140	-		30	
Perfluoroheptanesulfonic Acid (PFHpS)	92		-		70-132	-		30	
Perfluorononanoic Acid (PFNA)	90		-		72-129	-		30	
Perfluorooctanesulfonic Acid (PFOS)	100		-		68-136	-		30	
Perfluorodecanoic Acid (PFDA)	94		-		69-133	-		30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	97		-		65-137	-		30	
Perfluorononanesulfonic Acid (PFNS)	94		-		69-125	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	89		-		63-144	-		30	
Perfluoroundecanoic Acid (PFUnA)	82		-		64-136	-		30	
Perfluorodecanesulfonic Acid (PFDS)	86		-		59-134	-		30	
Perfluorooctanesulfonamide (FOSA)	100		-		67-137	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	83		-		61-139	-		30	
Perfluorododecanoic Acid (PFDoA)	92		-		69-135	-		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237075 Report Date: 07/25/22

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	 Mansfield Lab 	Associated s	sample(s): 01	Batch: W	G1663825-2				
Perfluorotridecanoic Acid (PFTrDA)	108		-		66-139	-		30	
Perfluorotetradecanoic Acid (PFTA)	110		-		69-133	-		30	

	LCS		LCSD		Acceptance
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	53	Q			61-135
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	52	Q			58-150
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	60	Q			74-139
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	55				14-167
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	59	Q			66-128
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	60	Q			71-129
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	60	Q			78-139
Perfluoro[13C8]Octanoic Acid (M8PFOA)	59	Q			75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	65				20-154
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	56	Q			72-140
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	58	Q			79-136
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	54	Q			75-130
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	58				19-175
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	41				31-134
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	55	Q			61-155
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	4	Q			5-117
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	39				34-137
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	49	Q			54-150
Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	19	Q			24-159

L2237075

07/25/22

Lab Control Sample Analysis

Project Name:	PEN-BOXFORD	Batch Quality Control	Lab Number:
Project Number:	MA220701		Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Perfluorinated Alkyl Acids by Isotope Dilution	Mansfield Lab	Associated s	ample(s): 01	Batch:	WG1663825-2				
Perfluorooctanesulfonamide (FOSA)	105		-		67-137	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	153	Q			5-117	

Matrix Spike Analysis Batch Quality Control

Project Number: MA220701

_

Lab Number: L2237075 Report Date: 07/25/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual L	RPD _imits
Perfluorinated Alkyl Acids by Is	otope Dilution	- Mansfield	Lab Assoc	ciated sample(s):	01 QC	Batch ID:	WG1663825-3	QC	Sample: L2	237075-01	l Clien	nt ID: WC-1
Perfluorobutanoic Acid (PFBA)	ND	8.44	7.94	91		-	-		71-135	-		30
Perfluoropentanoic Acid (PFPeA)	ND	8.44	8.30	90		-	-		69-132	-		30
Perfluorobutanesulfonic Acid (PFBS)	ND	7.5	6.67	89		-	-		72-128	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	7.92	7.13	90		-	-		62-145	-		30
Perfluorohexanoic Acid (PFHxA)	1.57	8.44	9.20	90		-	-		70-132	-		30
Perfluoropentanesulfonic Acid	ND	7.95	7.49	94		-	-		73-123	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	8.44	8.00	90		-	-		71-131	-		30
Perfluorohexanesulfonic Acid (PFHxS)	ND	7.72	8.24	107		-	-		67-130	-		30
Perfluorooctanoic Acid (PFOA)	ND	8.44	7.78	89		-	-		69-133	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	12.0	8.04	22.4	129		-	-		64-140	-		30
Perfluoroheptanesulfonic Acid	ND	8.06	7.49	93		-	-		70-132	-		30
Perfluorononanoic Acid (PFNA)	ND	8.44	8.07	96		-	-		72-129	-		30
Perfluorooctanesulfonic Acid (PFOS)	ND	7.84	7.91	97		-	-		68-136	-		30
Perfluorodecanoic Acid (PFDA)	ND	8.44	7.66	91		-	-		69-133	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	8.11	7.81F	96		-	-		65-137	-		30
Perfluorononanesulfonic Acid (PFNS)	ND	8.12	7.32	90		-	-		69-125	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	8.44	8.39	99		-	-		63-144	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	8.44	7.21	85		-	-		64-136	-		30
Perfluorodecanesulfonic Acid (PFDS)	ND	8.16	5.99	73		-	-		59-134	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	8.44	8.46	100		-	-		61-139	-		30
Perfluorododecanoic Acid (PFDoA)	ND	8.44	8.07	96		-	-		69-135	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	8.44	5.81	69		-	-		66-139	-		30

Matrix Spike Analysis

Project Number:	MA220701					Report Date:	07/25/22	
Project Name:	PEN-BOXFORD		Ba	atch Quality Contr	ol	Lab Number:	L2237075	

	Native	MS	MS	MS		MSD	MSD		Recovery	,	RPD	
 Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD (Qual Limits	
Perfluorinated Alkyl Acids by Iso	otope Dilution	- Mansfield La	ıb Associa	ated sample(s):	01 QC	Batch ID:	WG1663825-3	QC S	Sample: L2	237075-01	1 Client ID: WC-1	
Perfluorotetradecanoic Acid (PFTA)	ND	8.44	8.48	100		-	-		69-133	-	30	

MS	5	MS	SD	Acceptance
% Recovery	Qualifier	% Recovery	Qualifier	Criteria
92				19-175
86				14-167
91				20-154
27	Q			34-137
40				31-134
77				61-155
81				75-130
85				66-128
85				71-129
78				78-139
57				54-150
5	Q			24-159
83				61-135
78				58-150
81				79-136
83				75-130
78				72-140
81				74-139
	% Recovery 92 86 91 27 40 77 81 85 78 57 5 83 78 81 83 78 81 83 78 81 83 78 81	MS Qualifier 92 86 91 7 91 Q 85 Q 85 Q 85 Q 957 Q 85 Q 85 Q 85 Q 85 Q 85 Q 85 Q 83 Q 81 S 81	MS MS % Recovery Qualifier % Recovery 92 % Recovery 86 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 91 - - 40 - - 77 Q - - 81 - - - 85 - - - - 57 Q - - - - 83 - - - - - - 81 - - - - - -	MS MSD % Recovery Qualifier % Recovery Qualifier 92

Lab Duplicate Analysis Batch Quality Control

Project Name: PEN-BOXFORD

MA220701

Project Number:

Report Date:

Lab Number:

L2237075 07/25/22

Parameter	Native Sample	Duplicate Sample	Units	RPD G	RPD Qual Limits
Perfluorinated Alkyl Acids by Isotope Dilution DUP Sample	- Mansfield Lab Associated sam	ple(s): 01 QC Batch ID	: WG1663825-4	QC Samp	ble: L2237076-01 Client ID:
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/g	NC	30
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/g	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/g	NC	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/g	NC	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/g	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/g	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/g	NC	30
Perfluorooctanoic Acid (PFOA)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/g	NC	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/g	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/g	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/g	NC	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/g	NC	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/g	NC	30
Perfluorononanesulfonic Acid (PFNS)	ND	ND	ng/g	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/g	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/g	NC	30
Perfluorodecanesulfonic Acid (PFDS)	ND	ND	ng/g	NC	30
Perfluorooctanesulfonamide (FOSA)	ND	ND	ng/g	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: PEN-BOXFORD

MA220701

Project Number:

Report Date:

Lab Number:

L2237075 07/25/22

RPD Parameter Native Sample **Duplicate Sample** Units RPD Qual Limits Perfluorinated Alkyl Acids by Isotope Dilution - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1663825-4 QC Sample: L2237076-01 Client ID: DUP Sample N-Ethyl Perfluorooctanesulfonamidoacetic Acid ND ND ng/g NC 30 (NEtFOSAA) Perfluorododecanoic Acid (PFDoA) NC ND 30 ng/g ND Perfluorotridecanoic Acid (PFTrDA) NC 30 ND ND ng/g Perfluorotetradecanoic Acid (PFTA) NC 30 ND ND ng/g

Surrogate (Extracted Internal Standard)	%Recovery Qu	alifier %Recovery Qu	Acceptance Jalifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	104	100	61-135	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	100	95	58-150	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	96	95	74-139	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	124	124	14-167	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103	102	66-128	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	102	101	71-129	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	94	92	78-139	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	107	101	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	152	136	20-154	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	108	98	72-140	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	112	106	79-136	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	107	104	75-130	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	158	154	19-175	
N-Deuteriomethylperfluoro-1-octanesulfonamidoacetic Acid (d3-NMeFOSAA)	91	78	31-134	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	105	101	61-155	
Perfluoro[13C8]Octanesulfonamide (M8FOSA)	101	102	5-117	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	86	84	34-137	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	91	86	54-150	

Project Name: Project Number:	PEN-BOXFORD MA220701	Batch Quality Control						Lab Number: Report Date:		L2237075 07/25/22
Parameter		Native S	Sample	Duplicate	Sample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acid DUP Sample	s by Isotope Dilution - M	ansfield Lab	Associated sa	ample(s): 01	QC Batch I	D: WG16638	25-4 QC	Sample: L2	237076-01	Client ID:
Surrogate (E	xtracted Internal Stand	ard)		%Recovery	Qualifier	%Recoverv	Qualifier	Acceptanco Criteria	9	

- -

Perfluoro[1,2-13C2]Tetradecanoic Acid (M2PFTEDA)	78	74	24-159

INORGANICS & MISCELLANEOUS

Project Name:	PEN-BOXFORD		Lab Number:	L2237075
Project Number:	MA220701		Report Date:	07/25/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237075-01 WC-1 BOXFORD, MA		Date Collected: Date Received: Field Prep:	07/12/22 13:40 07/12/22 Not Specified
Sample Depth: Matrix:	Soil			

Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Mansfield Lab									
Solids, Total	56.8		%	0.100		1	-	07/15/22 18:08	121,2540G	JM

Project Name: Project Number:	PEN-BOXFORD MA220701	La	ab Duplicate Analy Batch Quality Control	sis	La Re	ab Number eport Date	: L2237075 : 07/25/22
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Mansfield Lab Associated sample(s):	01 QC Batch ID	: WG1663497-1	QC Sample:	L2237075-01	Client	ID: WC-1	
Solids, Total	56.8	57.8		%	2		10

Project Name:PEN-BOXFORDProject Number:MA220701

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2237075-01A	Plastic 8oz unpreserved	А	NA		5.7	Y	Absent		A2-537-ISOTOPE(14)	
L2237075-01B	Plastic 2oz unpreserved for TS	А	NA		5.7	Y	Absent		A2-TS(7)	

YES

Project Number: MA220701

Serial_No:07252211:02 Lab Number: L2237075 Report Date: 07/25/22

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFIrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PENA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroneptanoic Acid		375-85-9
Perfluoronexanoic Acid		307-24-4
Periluoropentanoic Acid	PFPEA	2706-90-3
Periluorodutanoic Acid	РЕВА	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H.1H.2H.2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H.1H.2H.2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H.1H.2H.2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H.2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
	5054	754.04.0
N Ethyl Dorfluoroostopo Sulfonomido		154-91-0
N-Elityi Perituoroociane Sulfonomide	NMAEOSA	4151-50-2
	Nivier OSA	51506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PE3OUdS	763051-92-9
9-Chlorobexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PE3ONS	756426-58-1
		100420 00 1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)	55550	
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Number: MA220701

Lab Number: L2237075

Report Date: 07/25/22

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NK	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Number: MA220701

Lab Number: L2237075 Report Date: 07/25/22

Footnotes

1 00011010

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

Project Number: MA220701

Serial_No:07252211:02

Lab Number: L2237075

Report Date: 07/25/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: PEN-BOXFORD Project Number: MA220701

 Lab Number:
 L2237075

 Report Date:
 07/25/22

REFERENCES

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 134 Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS) using Isotope Dilution. Alpha SOP 23528.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

8 Walkup Drive Westboro, MA 01581 Tel: 508-898-9220	CHAIN OF 320 Forbes Blvd Mansfield, MA 02048 Tel: 508-822-9300	Project I Project Nat	nformation me: PEN	Y PAGE	<u>∎</u>]_0 ford	F	Date R Repo	Rec'd in ort Info DEx Ilatory	n Lab: ormati / Requ	7/ ion - D = EM/ uireme	12 ata D NL	/22 elivera & Pr	bles oject l	ALPH/ Billing	Serial_I A Job i Inform as Clier on Req	No:07 #: / nation nt info quirem	252211:02 .2_237075 PO#:MA2207(ients	
Client Information Project Location: Boxford, Client: CHCI Project #: MA220701 Address: 8 Pleasant St. Project Manager: Brian M. S. Natick, MA 01760 ALPHA Quote #:			loure		Yes Yes Yes Yes Yes Oth	Yes INO MA MCP Analytical Methods Yes INO Matrix Spike Required on this SDG? Yes INO GW1 Standards (Info Required for N Yes INO NPDES RGP Other State /Fed Program				□ Yes □ No CT RCP Analytical Meth OG? (Required for MCP Inorganics) or Metals & EPH with Targets) Criteria <u>RCS-1</u>			CP Analytical Methods ganics) is) S-(
Phone: 508 315- Email: GMOORE + J Additional Proj 215 Project	3146 Swigg in @ car-	Turn-An	ard AT	RUSH (only cost	nymed it pro-app	orosed()	Dapen ANALYSIS	D ABN _ D 524.2	S. UMCP 13 CH	S: C RCRAS C RCP 14 CRCP 15	Rangos S Targets D Ranges C	3 C PEST argets C Ranges Only	S 24 DFINgerprint				SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	TOTAL . BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	tion Time	Sample Matrix	Sampler Initials	, Sol	SVOC:	METALS	EPH: D	NPH: D	TPH: C	PFR			/	Sample Comments	L E S
37075-01	WC-1		7/12/22	13:40	Soil	SSH												
Container Type P= Plastic A= Amber glass V= Vial G= Glass	Preservative A= None B= HCI C≈ HNO ₃ D= H,504				Cont	tainer Type Preservative			Page	aived B			P A	ate/Time				
G= Glass D= H ₂ SO ₄ B= Bacteria cup E= NaOH C= Cube F= MeOH O= Other G= NaHSO ₄ E= Encore H = Na ₂ S ₂ O ₃ D= BOD Bottle I= Ascorbic Acid J= NH ₄ Cl Page 31 of 31 K=Zn Acetate O= Other		Peling Peling	uished By:	nj	71/2	204:48 1845	Received By: S Manuel 1/17 Pan Co bac 7/17				14	je R	7/2	All samples submitted are subject Alpha's Terms and Conditions. See reverse side. 22. 20:00 FORM NO: 01-01 (rev. 12-Mar-2012)			ct to	

ANALYTICAL REPORT

Lab Number:	L2237070
Client:	CarriageHouse Consulting Inc. 8A Pleasant Street South Natick, MA 01760
ATTN:	Brian Moore
Phone:	(508) 315-3146
Project Name:	PEN-BOXFORD
Project Number:	MA220701
Report Date:	07/27/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:07272214:43

Project Name:PEN-BOXFORDProject Number:MA220701

 Lab Number:
 L2237070

 Report Date:
 07/27/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2237070-01	S-2	SOIL	BOXFORD, MA	07/12/22 13:25	07/12/22
L2237070-02	S-3	SOIL	BOXFORD, MA	07/12/22 13:20	07/12/22
L2237070-03	S-4	SOIL	BOXFORD, MA	07/12/22 13:15	07/12/22
L2237070-04	S-5	SOIL	BOXFORD, MA	07/12/22 13:10	07/12/22
L2237070-05	S-6	SOIL	BOXFORD, MA	07/12/22 13:05	07/12/22
L2237070-06	S-2	SOIL	BOXFORD, MA	07/12/22 13:00	07/12/22
Project Name: PEN-BOXFORD

Lab Number: L2237070 Report Date: 07/27/22

Project Number: MA220701

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status						
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES					
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES					
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES					
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES					
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES					
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A					
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES					
A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES					

I Were results reported for the complete analyte list specified in the selected CAM protocol(s)? YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237070 Report Date: 07/27/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:PEN-BOXFORDProject Number:MA220701

 Lab Number:
 L2237070

 Report Date:
 07/27/22

Case Narrative (continued)

MCP Related Narratives

EPH

In reference to question G:

L2237070-01D and -02D: One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

609 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 07/27/22

QC OUTLIER SUMMARY REPORT

Project N	ame:	PEN-BOXFORD	1			L	ab Numbe	r: L22	237070
Project N	umber:	MA220701				R	eport Date	e: 07/2	27/22
Method	Client ID ((Native ID)	Lab ID	Parameter	QC Type	Recovery/RPD (%)	QC Limits (%)	Associated Samples	Data Quality Assessment

There are no QC Outliers associated with this report.

ORGANICS

PETROLEUM HYDROCARBONS

				Serial_No:	07272214:43
Project Name:	PEN-BOXFORD			Lab Number:	L2237070
Project Number:	MA220701			Report Date:	07/27/22
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-01 S-2 BOXFORD, MA	D		Date Collected: Date Received: Field Prep:	07/12/22 13:25 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 135,EPH-19-2.1 07/27/22 12:23 JB 85%			Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 07/26/22 12:42 EPH-19-2.1 07/27/22

Satisfactory
Received on Ice
Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		mg/kg	37.6		5				
C19-C36 Aliphatics	ND		mg/kg	37.6		5				
C11-C22 Aromatics	635		mg/kg	37.6		5				
C11-C22 Aromatics, Adjusted	381		mg/kg	37.6		5				
Naphthalene	ND		mg/kg	1.88		5				
2-Methylnaphthalene	ND		mg/kg	1.88		5				
Acenaphthylene	ND		mg/kg	1.88		5				
Acenaphthene	ND		mg/kg	1.88		5				
Fluorene	3.57		mg/kg	1.88		5				
Phenanthrene	39.8		mg/kg	1.88		5				
Anthracene	3.82		mg/kg	1.88		5				
Fluoranthene	48.8		mg/kg	1.88		5				
Pyrene	43.3		mg/kg	1.88		5				
Benzo(a)anthracene	16.3		mg/kg	1.88		5				
Chrysene	21.9		mg/kg	1.88		5				
Benzo(b)fluoranthene	21.5		mg/kg	1.88		5				
Benzo(k)fluoranthene	22.3		mg/kg	1.88		5				
Benzo(a)pyrene	14.3		mg/kg	1.88		5				
Indeno(1,2,3-cd)Pyrene	8.77		mg/kg	1.88		5				
Dibenzo(a,h)anthracene	2.95		mg/kg	1.88		5				
Benzo(ghi)perylene	7.24		mg/kg	1.88		5				

				Serial_No	:07272214:43
Project Name:	PEN-BOXFORD			Lab Number:	L2237070
Project Number:	MA220701			Report Date:	07/27/22
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-01 S-2 BOXFORD, MA	D		Date Collected: Date Received: Field Prep:	07/12/22 13:25 07/12/22 Not Specified
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

		Acceptance
Surrogate	% Recovery	Qualifier Criteria
Chloro-Octadecane	53	40-140
o-Terphenyl	76	40-140
2-Fluorobiphenyl	67	40-140
2-Bromonaphthalene	73	40-140

				Serial_No:	07272214:43
Project Name:	PEN-BOXFORD			Lab Number:	L2237070
Project Number:	MA220701			Report Date:	07/27/22
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-02 S-3 BOXFORD, MA	D		Date Collected: Date Received: Field Prep:	07/12/22 13:20 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 135,EPH-19-2.1 07/27/22 10:42 JB 91%			Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 07/13/22 07:13 EPH-19-2.1 07/16/22

Satisfactory
Received on Ice
Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		mg/kg	14.2		2				
C19-C36 Aliphatics	20.6		mg/kg	14.2		2				
C11-C22 Aromatics	299		mg/kg	14.2		2				
C11-C22 Aromatics, Adjusted	191		mg/kg	14.2		2				
Naphthalene	ND		mg/kg	0.708		2				
2-Methylnaphthalene	ND		mg/kg	0.708		2				
Acenaphthylene	ND		mg/kg	0.708		2				
Acenaphthene	ND		mg/kg	0.708		2				
Fluorene	1.52		mg/kg	0.708		2				
Phenanthrene	16.3		mg/kg	0.708		2				
Anthracene	1.71		mg/kg	0.708		2				
Fluoranthene	20.7		mg/kg	0.708		2				
Pyrene	17.9		mg/kg	0.708		2				
Benzo(a)anthracene	7.35		mg/kg	0.708		2				
Chrysene	10.2		mg/kg	0.708		2				
Benzo(b)fluoranthene	10.3		mg/kg	0.708		2				
Benzo(k)fluoranthene	4.17		mg/kg	0.708		2				
Benzo(a)pyrene	7.12		mg/kg	0.708		2				
Indeno(1,2,3-cd)Pyrene	4.79		mg/kg	0.708		2				
Dibenzo(a,h)anthracene	1.48		mg/kg	0.708		2				
Benzo(ghi)perylene	4.18		mg/kg	0.708		2				

				Serial_No:07272214:43	
Project Name:	PEN-BOXFORD			Lab Number:	L2237070
Project Number:	MA220701			Report Date:	07/27/22
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-02 S-3 BOXFORD, MA	D		Date Collected: Date Received: Field Prep:	07/12/22 13:20 07/12/22 Not Specified
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

Surrogate	% Recovery	Acceptance Ouglifier Criteria
Surrogate	76 INECOVELY	Quaimer
Chloro-Octadecane	45	40-140
o-Terphenyl	70	40-140
2-Fluorobiphenyl	71	40-140
2-Bromonaphthalene	73	40-140

			Serial_No:(07272214:43
Project Name:	PEN-BOXFORD		Lab Number:	L2237070
Project Number:	MA220701		Report Date:	07/27/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-03 S-4 BOXFORD, MA		Date Collected: Date Received: Field Prep:	07/12/22 13:15 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 135,EPH-19-2.1 07/18/22 01:54 SR 39%		Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 07/13/22 07:13 EPH-19-2.1 07/16/22

Quality Control Information					
Satisfactory					
Received on Ice					
Extracted Per the Method					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		mg/kg	16.9		1		
C19-C36 Aliphatics	ND		mg/kg	16.9		1		
C11-C22 Aromatics	53.6		mg/kg	16.9		1		
C11-C22 Aromatics, Adjusted	39.2		mg/kg	16.9		1		
Naphthalene	ND		mg/kg	0.847		1		
2-Methylnaphthalene	ND		mg/kg	0.847		1		
Acenaphthylene	ND		mg/kg	0.847		1		
Acenaphthene	ND		mg/kg	0.847		1		
Fluorene	ND		mg/kg	0.847		1		
Phenanthrene	1.52		mg/kg	0.847		1		
Anthracene	ND		mg/kg	0.847		1		
Fluoranthene	2.75		mg/kg	0.847		1		
Pyrene	2.57		mg/kg	0.847		1		
Benzo(a)anthracene	1.11		mg/kg	0.847		1		
Chrysene	1.71		mg/kg	0.847		1		
Benzo(b)fluoranthene	1.88		mg/kg	0.847		1		
Benzo(k)fluoranthene	ND		mg/kg	0.847		1		
Benzo(a)pyrene	1.16		mg/kg	0.847		1		
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.847		1		
Dibenzo(a,h)anthracene	ND		mg/kg	0.847		1		
Benzo(ghi)perylene	1.72		mg/kg	0.847		1		

			Serial_No:07272214:43		
Project Name:	PEN-BOXFORD		Lab Number:	L2237070	
Project Number:	MA220701		Report Date:	07/27/22	
		SAMPLE RESULTS			
Lab ID:	L2237070-03		Date Collected:	07/12/22 13:15	
Client ID:	S-4		Date Received:	07/12/22	
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

		Acceptance
Surrogate	% Recovery	Qualifier Criteria
Chloro-Octadecane	63	40-140
o-Terphenyl	50	40-140
2-Fluorobiphenyl	50	40-140
2-Bromonaphthalene	51	40-140

			Serial_No:0	07272214:43
Project Name:	PEN-BOXFORD		Lab Number:	L2237070
Project Number:	MA220701		Report Date:	07/27/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-04 S-5 BOXFORD, MA		Date Collected: Date Received: Field Prep:	07/12/22 13:10 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 135,EPH-19-2.1 07/27/22 10:51 JB 63%		Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 07/26/22 12:42 EPH-19-2.1 07/27/22

Quality Control Information					
Satisfactory					
Received on Ice					
Extracted Per the Method					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND	n	ng/kg	10.4		1		
C19-C36 Aliphatics	ND	n	ng/kg	10.4		1		
C11-C22 Aromatics	15.5	n	ng/kg	10.4		1		
C11-C22 Aromatics, Adjusted	15.5	n	ng/kg	10.4		1		
Naphthalene	ND	n	ng/kg	0.518		1		
2-Methylnaphthalene	ND	n	ng/kg	0.518		1		
Acenaphthylene	ND	n	ng/kg	0.518		1		
Acenaphthene	ND	n	ng/kg	0.518		1		
Fluorene	ND	n	ng/kg	0.518		1		
Phenanthrene	ND	n	ng/kg	0.518		1		
Anthracene	ND	n	ng/kg	0.518		1		
Fluoranthene	ND	n	ng/kg	0.518		1		
Pyrene	ND	n	ng/kg	0.518		1		
Benzo(a)anthracene	ND	n	ng/kg	0.518		1		
Chrysene	ND	n	ng/kg	0.518		1		
Benzo(b)fluoranthene	ND	n	ng/kg	0.518		1		
Benzo(k)fluoranthene	ND	n	ng/kg	0.518		1		
Benzo(a)pyrene	ND	n	ng/kg	0.518		1		
Indeno(1,2,3-cd)Pyrene	ND	n	ng/kg	0.518		1		
Dibenzo(a,h)anthracene	ND	n	ng/kg	0.518		1		
Benzo(ghi)perylene	ND	n	ng/kg	0.518		1		

			Serial_No:07272214:43		
Project Name:	PEN-BOXFORD		Lab Number:	L2237070	
Project Number:	MA220701		Report Date:	07/27/22	
		SAMPLE RESULTS			
Lab ID:	L2237070-04		Date Collected:	07/12/22 13:10	
Client ID:	S-5		Date Received:	07/12/22	
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified	
Sample Depth:					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

		Acceptance
Surrogate	% Recovery	Qualifier Criteria
Chloro-Octadecane	68	40-140
o-Terphenyl	61	40-140
2-Fluorobiphenyl	78	40-140
2-Bromonaphthalene	79	40-140

			Serial_No:0	07272214:43
Project Name:	PEN-BOXFORD		Lab Number:	L2237070
Project Number:	MA220701		Report Date:	07/27/22
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2237070-05 S-6 BOXFORD, MA		Date Collected: Date Received: Field Prep:	07/12/22 13:05 07/12/22 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 135,EPH-19-2.1 07/17/22 23:00 SR 42%		Extraction Method: Extraction Date: Cleanup Method1: Cleanup Date1:	EPA 3546 07/13/22 07:13 EPH-19-2.1 07/16/22

3
ne Method
.1

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ns - Westborough La	b				
C9-C18 Aliphatics	ND		mg/kg	15.2		1
C19-C36 Aliphatics	ND		mg/kg	15.2		1
C11-C22 Aromatics	15.3		mg/kg	15.2		1
C11-C22 Aromatics, Adjusted	15.3		mg/kg	15.2		1
Naphthalene	ND		mg/kg	0.762		1
2-Methylnaphthalene	ND		mg/kg	0.762		1
Acenaphthylene	ND		mg/kg	0.762		1
Acenaphthene	ND		mg/kg	0.762		1
Fluorene	ND		mg/kg	0.762		1
Phenanthrene	ND		mg/kg	0.762		1
Anthracene	ND		mg/kg	0.762		1
Fluoranthene	ND		mg/kg	0.762		1
Pyrene	ND		mg/kg	0.762		1
Benzo(a)anthracene	ND		mg/kg	0.762		1
Chrysene	ND		mg/kg	0.762		1
Benzo(b)fluoranthene	ND		mg/kg	0.762		1
Benzo(k)fluoranthene	ND		mg/kg	0.762		1
Benzo(a)pyrene	ND		mg/kg	0.762		1
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.762		1
Dibenzo(a,h)anthracene	ND		mg/kg	0.762		1
Benzo(ghi)perylene	ND		mg/kg	0.762		1

			Serial_No	:07272214:43
Project Name:	PEN-BOXFORD		Lab Number:	L2237070
Project Number:	MA220701		Report Date:	07/27/22
		SAMPLE RESULTS		
Lab ID:	L2237070-05		Date Collected:	07/12/22 13:05
Client ID:	S-6		Date Received:	07/12/22
Sample Location:	BOXFORD, MA		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor

		Acceptance
Surrogate	% Recovery	Qualifier Criteria
Chloro-Octadecane	53	40-140
o-Terphenyl	48	40-140
2-Fluorobiphenyl	54	40-140
2-Bromonaphthalene	55	40-140

					Seria	al_No:072	272214:43
Project Name:	PEN-BOXFORD				Lab Numb	er:	L2237070
Project Number:	MA220701				Report Dat	e:	07/27/22
		SAMPLE	RESULTS				
Lab ID: Client ID: Sample Location:	L2237070-06 S-2 BOXFORD, MA				Date Collecte Date Receive Field Prep:	ed: 0 ed: 0 ⊳N	7/12/22 13:00 7/12/22 lot Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids: Trap:	Soil 131,VPH-18-2.1 07/19/22 15:54 BAD 93% EST, Carbopack B/Carbo	xen 1000&100	1		Analytical Col	umn: F	testek, RTX-502.2,
						1	05m, 0.53ID, 3um
	(Quality Contr	ol Informatio	on			
Condition of sample rece	eived:				Sa	tisfactory	
Sample Temperature up	on receipt:				Re	ceived on le	се
Were samples received	in methanol?				Co	vering the S	Soil
Methanol ratio:					1 :1	+/- 25%	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum	Hydrocarbons - Westbo	orough Lab					
C5-C8 Aliphatics		ND		mg/kg	5.95		1
C9-C12 Aliphatics		ND		mg/kg	5.95		1
C9-C10 Aromatics		ND		mg/kg	5.95		1
C5-C8 Aliphatics, Adjust	ed	ND		mg/kg	5.95		1
C9-C12 Aliphatics, Adjus	sted	ND		mg/kg	5.95		1
Benzene		ND		mg/kg	0.119		1
Toluene		ND		mg/kg	0.119		1
Ethylbenzene		ND		mg/kg	0.119		1
p/m-Xylene		ND		mg/kg	0.119		1
o-Xylene		ND		mg/kg	0.119		1
Methyl tert butyl ether		ND		mg/kg	0.060		1
Naphthalene		0.253		mg/kg	0.238		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	98		70-130	
2,5-Dibromotoluene-FID	110		70-130	

Project Name:PEN-BOXFORDLab Number:Project Number:MA220701Report Date:

 Lab Number:
 L2237070

 Report Date:
 07/27/22

Method Blank Analysis Batch Quality Control

Analytical Method:	135,EPH-19-2.1
Analytical Date:	07/17/22 13:50
Analyst:	SR

Extraction Method:EPA 3546Extraction Date:07/13/22 07:13Cleanup Method:EPH-19-2.1Cleanup Date:07/16/22

arameter	Result	Qualifier	Units	RL	MDL	
xtractable Petroleum Hydroca	bons - Westbor	ough Lab	for sample(s):	02-03,05	Batch:	WG1662188-
C9-C18 Aliphatics	ND		mg/kg	6.34		
C19-C36 Aliphatics	ND		mg/kg	6.34		
C11-C22 Aromatics	ND		mg/kg	6.34		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.34		
Naphthalene	ND		mg/kg	0.317		
2-Methylnaphthalene	ND		mg/kg	0.317		
Acenaphthylene	ND		mg/kg	0.317		
Acenaphthene	ND		mg/kg	0.317		
Fluorene	ND		mg/kg	0.317		
Phenanthrene	ND		mg/kg	0.317		
Anthracene	ND		mg/kg	0.317		
Fluoranthene	ND		mg/kg	0.317		
Pyrene	ND		mg/kg	0.317		
Benzo(a)anthracene	ND		mg/kg	0.317		
Chrysene	ND		mg/kg	0.317		
Benzo(b)fluoranthene	ND		mg/kg	0.317		
Benzo(k)fluoranthene	ND		mg/kg	0.317		
Benzo(a)pyrene	ND		mg/kg	0.317		
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.317		
Dibenzo(a,h)anthracene	ND		mg/kg	0.317		
Benzo(ghi)perylene	ND		mg/kg	0.317		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
Chloro-Octadecane	64		40-140		
o-Terphenyl	62		40-140		
2-Fluorobiphenyl	65		40-140		
2-Bromonaphthalene	65		40-140		

Project Name: PEN-BOXFORD

Project Number: MA220701

Lab Number: L2237070 Report Date: 07/27/22

Method Blank Analysis Batch Quality Control

Analytical Method:131,VPH-18-2.1Analytical Date:07/19/22 14:27Analyst:BAD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Petroleum Hydrocarbons - V	Nestborough	h Lab for s	ample(s):	06	Batch:	WG1665342-4	
C5-C8 Aliphatics	ND		mg/kg	5	5.00		
C9-C12 Aliphatics	ND		mg/kg	5	5.00		
C9-C10 Aromatics	ND		mg/kg	5	5.00		
C5-C8 Aliphatics, Adjusted	ND		mg/kg	5	5.00		
C9-C12 Aliphatics, Adjusted	ND		mg/kg	5	5.00		
Benzene	ND		mg/kg	0	.100		
Toluene	ND		mg/kg	0	.100		
Ethylbenzene	ND		mg/kg	0	.100		
p/m-Xylene	ND		mg/kg	0	.100		
o-Xylene	ND		mg/kg	0	.100		
Methyl tert butyl ether	ND		mg/kg	0	.050		
Naphthalene	ND		mg/kg	0	.200		

Surrogate	%Recovery	A Qualifier	cceptance Criteria
2,5-Dibromotoluene-PID	89		70-130
2,5-Dibromotoluene-FID	97		70-130

Project Name:	PEN-BOXFORD	Lab Number:	L2237070
Project Number:	MA220701	Report Date:	07/27/22

Method Blank Analysis Batch Quality Control

Analytical Method:	135,EPH-19-2.1
Analytical Date:	07/27/22 10:00
Analyst:	JB

Extraction Method:EPA 3546Extraction Date:07/25/22 15:28Cleanup Method:EPH-19-2.1Cleanup Date:07/27/22

Parameter	Result	Qualifier	Units	RL	MDI	-
Extractable Petroleum Hydrocarbo	ons - Westbor	ough Lab f	or sample(s):	01,04	Batch:	WG1667136-1
C9-C18 Aliphatics	ND		mg/kg	6.50		
C19-C36 Aliphatics	ND		mg/kg	6.50		
C11-C22 Aromatics	ND		mg/kg	6.50		
C11-C22 Aromatics, Adjusted	ND		mg/kg	6.50		
Naphthalene	ND		mg/kg	0.325		
2-Methylnaphthalene	ND		mg/kg	0.325		
Acenaphthylene	ND		mg/kg	0.325		
Acenaphthene	ND		mg/kg	0.325		
Fluorene	ND		mg/kg	0.325		
Phenanthrene	ND		mg/kg	0.325		
Anthracene	ND		mg/kg	0.325		
Fluoranthene	ND		mg/kg	0.325		
Pyrene	ND		mg/kg	0.325		
Benzo(a)anthracene	ND		mg/kg	0.325		
Chrysene	ND		mg/kg	0.325		
Benzo(b)fluoranthene	ND		mg/kg	0.325		
Benzo(k)fluoranthene	ND		mg/kg	0.325		
Benzo(a)pyrene	ND		mg/kg	0.325		
Indeno(1,2,3-cd)Pyrene	ND		mg/kg	0.325		
Dibenzo(a,h)anthracene	ND		mg/kg	0.325		
Benzo(ghi)perylene	ND		mg/kg	0.325		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
Chloro-Octadecane	65		40-140		
o-Terphenyl	60		40-140		
2-Fluorobiphenyl	76		40-140		
2-Bromonaphthalene	75		40-140		

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237070 Report Date: 07/27/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Wes	stborough Lab As	sociated samp	le(s): 02-03,05	Batch:	WG1662188-2	WG1662188-3		
C9-C18 Aliphatics	46		51		40-140	10		25
C19-C36 Aliphatics	59		64		40-140	8		25
C11-C22 Aromatics	66		72		40-140	9		25
Naphthalene	56		60		40-140	7		25
2-Methylnaphthalene	57		62		40-140	8		25
Acenaphthylene	57		62		40-140	8		25
Acenaphthene	60		66		40-140	10		25
Fluorene	62		69		40-140	11		25
Phenanthrene	63		70		40-140	11		25
Anthracene	64		71		40-140	10		25
Fluoranthene	66		71		40-140	7		25
Pyrene	66		73		40-140	10		25
Benzo(a)anthracene	67		74		40-140	10		25
Chrysene	65		72		40-140	10		25
Benzo(b)fluoranthene	64		71		40-140	10		25
Benzo(k)fluoranthene	62		68		40-140	9		25
Benzo(a)pyrene	66		73		40-140	10		25
Indeno(1,2,3-cd)Pyrene	64		70		40-140	9		25
Dibenzo(a,h)anthracene	65		71		40-140	9		25
Benzo(ghi)perylene	60		66		40-140	10		25

Project Name:PEN-BOXFORDProject Number:MA220701

Lab Number: L2237070

Report Date: 07/27/22

Parameter	LCS % Pocovorv	Qual	LCSD %Recovery	Qual	%Recovery	000	Qual	RPD Limits	
Parameter	%Recovery	Quai	/anecovery	Quai	LIIIIIIS	RPD	Quai	LIIIIIIS	
Extractable Petroleum Hydrocarbons - Westb	orough Lab Asso	ciated samp	le(s): 02-03,05	Batch:	WG1662188-2	WG1662188-3			

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	52	56	40-140
o-Terphenyl	63	69	40-140
2-Fluorobiphenyl	67	67	40-140
2-Bromonaphthalene	70	69	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237070 Report Date: 07/27/22

Parameter	LCS %Recovery Qual	LCSD %Recovery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - W	Vestborough Lab Associated sample(s)	: 06 Batch:	WG1665342-2	WG1665342-3				
C5-C8 Aliphatics	108	116		70-130	7		25	
C9-C12 Aliphatics	108	110		70-130	2		25	
C9-C10 Aromatics	100	101		70-130	1		25	
Benzene	99	102		70-130	3		25	
Toluene	97	99		70-130	2		25	
Ethylbenzene	99	102		70-130	3		25	
p/m-Xylene	102	104		70-130	2		25	
o-Xylene	99	100		70-130	1		25	
Methyl tert butyl ether	98	96		70-130	2		25	
Naphthalene	94	93		70-130	0		25	
1,2,4-Trimethylbenzene	100	101		70-130	1		25	
Pentane	101	113		70-130	11		25	
2-Methylpentane	98	103		70-130	5		25	
2,2,4-Trimethylpentane	109	114		70-130	4		25	
n-Nonane	109	112		30-130	3		25	
n-Decane	105	105		70-130	0		25	
n-Butylcyclohexane	109	112		70-130	3		25	

Surrogate	LCS	LCSD	Acceptance
	%Recovery	Qual %Recovery	Qual Criteria
2,5-Dibromotoluene-PID	92	91	70-130
2,5-Dibromotoluene-FID	102	100	70-130

Project Name: PEN-BOXFORD Project Number: MA220701

Lab Number: L2237070 Report Date: 07/27/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove Limits	ery RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - We	estborough Lab As	ssociated samp	le(s): 01,04	Batch: V	VG1667136-2	WG1667136-3		
C9-C18 Aliphatics	63		72		40-140	13		25
C19-C36 Aliphatics	77		86		40-140	11		25
C11-C22 Aromatics	68		69		40-140	1		25
Naphthalene	67		65		40-140	3		25
2-Methylnaphthalene	68		66		40-140	3		25
Acenaphthylene	66		64		40-140	3		25
Acenaphthene	68		67		40-140	1		25
Fluorene	68		68		40-140	0		25
Phenanthrene	67		68		40-140	1		25
Anthracene	68		68		40-140	0		25
Fluoranthene	67		68		40-140	1		25
Pyrene	66		68		40-140	3		25
Benzo(a)anthracene	66		67		40-140	2		25
Chrysene	64		64		40-140	0		25
Benzo(b)fluoranthene	63		65		40-140	3		25
Benzo(k)fluoranthene	60		61		40-140	2		25
Benzo(a)pyrene	65		66		40-140	2		25
Indeno(1,2,3-cd)Pyrene	62		63		40-140	2		25
Dibenzo(a,h)anthracene	62		62		40-140	0		25
Benzo(ghi)perylene	56		57		40-140	2		25

Project Name:PEN-BOXFORDProject Number:MA220701

 Lab Number:
 L2237070

 Report Date:
 07/27/22

 LCS
 LCSD
 %Recovery
 RPD

 Parameter
 %Recovery
 Qual
 %Recovery
 Qual
 Limits
 RPD
 Qual
 Limits

LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
68	75	40-140
63	63	40-140
74	72	40-140
76	73	40-140
0	0	
0	0	
	LCS %Recovery Qual 68 63 74 76 0 0	LCS %Recovery LCSD Qual Qual 68 75 63 63 74 72 76 73 0 0 0 0 0 0

INORGANICS & MISCELLANEOUS

								Serial_No:072	272214:43	
Project Name:	PEN-BOXFO	ORD					Lab N	lumber: l	L2237070	
Project Number:	MA220701						Repo	rt Date:	07/27/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237070-0	1					Date	Collected: (07/12/22 13:25	
Client ID:	S-2						Date	Received: (07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep: I	Not Specified	
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total	85.3		%	0.100	NA	1	-	07/13/22 07:47	7 121,2540G	RI

								Serial_No:07	272214:43		
Project Name:	PEN-BOXFC	ORD					Lab N	lumber:	L2237070		
Project Number:	MA220701						Repo	rt Date:	07/27/22		
				SAMPLE	RESUL	TS					
Lab ID:	L2237070-02	2					Date	Collected:	07/12/22 13:20)	
Client ID:	S-3						Date	Received:	07/12/22		
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified		
Sample Depth:	0.1										
Matrix:	Soil					Dilution	Date	Date	Analytical		
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst	
General Chemistry - We	stborough Lab)									
Solids, Total	90.8		%	0.100	NA	1	-	07/13/22 07:4	7 121,2540G	RI	

								Serial_No:07	272214:43	
Project Name:	PEN-BOXFO	ORD					Lab N	lumber:	L2237070	
Project Number:	MA220701						Repo	rt Date:	07/27/22	
				SAMPLE	RESUL	ГS				
Lab ID:	L2237070-0	3					Date	Collected:	07/12/22 13:15	
Client ID:	S-4						Date	Received:	07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified	
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Solids, Total	38.8		%	0.100	NA	1	-	07/13/22 07:4	7 121,2540G	RI

								Serial_No:07	272214:43		
Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237070		
Project Number:	MA220701						Repo	rt Date:	07/27/22		
				SAMPLE	RESUL	TS					
Lab ID:	L2237070-0	4					Date	Collected:	07/12/22 13:10)	
Client ID:	S-5						Date	Received:	07/12/22		
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified		
Sample Depth:	Soil										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - We	stborough Lat)									
Solids, Total	62.8		%	0.100	NA	1	-	07/13/22 07:4	7 121,2540G	RI	

								Serial_No:07	272214:43		
Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237070		
Project Number:	MA220701						Repo	rt Date:	07/27/22		
				SAMPLE	RESUL	rs					
Lab ID:	L2237070-0	5					Date	Collected:	07/12/22 13:0	5	
Client ID:	S-6						Date	Received:	07/12/22		
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified		
Sample Depth:											
Matrix:	Soil										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - We	stborough Lal	0									
Solids, Total	42.1		%	0.100	NA	1	_	07/13/22 07:4	7 121,2540G	RI	

								Serial_No:07	272214:43	
Project Name:	PEN-BOXF	ORD					Lab N	lumber:	L2237070	
Project Number:	MA220701						Repo	rt Date:	07/27/22	
				SAMPLE	RESUL	TS				
Lab ID:	L2237070-0	6					Date	Collected:	07/12/22 13:00)
Client ID:	S-2						Date	Received:	07/12/22	
Sample Location:	BOXFORD,	MA					Field	Prep:	Not Specified	
Sample Depth:										
Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat	C								
Solids, Total	93.3		%	0.100	NA	1	-	07/13/22 07:4	7 121,2540G	RI

Project Name: Project Number:	PEN-BOXFORD MA220701	La	ab Duplicate Analy Batch Quality Control	sis	La Re	ab Number: eport Date:	L2237070 07/27/22
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

General Chemistry - Westborough Lab	Associated sample(s): 01-06	QC Batch ID: WG1662149-1	QC Sample: L	2237070-01	Client ID: S-2	
Solids, Total	85.3	86.7	%	2		20

Project Name:PEN-BOXFORDProject Number:MA220701

Serial_No:07272214:43 *Lab Number:* L2237070 *Report Date:* 07/27/22

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2237070-01A	Glass 60mL/2oz unpreserved	А	NA		5.6	Y	Absent		EPH-DELUX-20(14)
L2237070-01B	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		TS(7)
L2237070-02A	Glass 60mL/2oz unpreserved	А	NA		5.6	Y	Absent		EPH-DELUX-20(14)
L2237070-02B	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		TS(7)
L2237070-03A	Glass 60mL/2oz unpreserved	А	NA		5.6	Y	Absent		EPH-DELUX-20(14)
L2237070-03B	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		TS(7)
L2237070-04A	Glass 60mL/2oz unpreserved	А	NA		5.6	Y	Absent		EPH-DELUX-20(14)
L2237070-04B	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		TS(7)
L2237070-05A	Glass 60mL/2oz unpreserved	А	NA		5.6	Y	Absent		EPH-DELUX-20(14)
L2237070-05B	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		TS(7)
L2237070-06A	Plastic 2oz unpreserved for TS	А	NA		5.6	Y	Absent		TS(7)
L2237070-06B	Vial MeOH preserved	А	NA		5.6	Y	Absent		VPH-DELUX-18(28)

Project Name: PEN-BOXFORD

Project Number: MA220701

Lab Number: L2237070

Report Date: 07/27/22

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: PEN-BOXFORD

Project Number: MA220701

Lab Number: L2237070 Report Date: 07/27/22

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J -Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.

Report Format: Data Usability Report

^{1 00011010}
Project Name: PEN-BOXFORD

Project Number: MA220701

Serial_No:07272214:43

Lab Number: L2237070

Report Date: 07/27/22

Data Qualifiers

- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name: PEN-BOXFORD Project Number: MA220701

 Lab Number:
 L2237070

 Report Date:
 07/27/22

REFERENCES

- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 131 Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.
- 135 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, December 2019, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, March 1, 2020.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:07272214:43

	CHA	AIN OF CL	JSTO	DY P	age[_0F_[Date R	ec'd in Lal	b:7	112	127	,		ALPH	IA Jol	b#: {	22370-	20		
Autorite Street	Projec	Project Information					Report Information - Data Deliverables						Billing Information							
Westboro, MA (Tel: 508-898-9)	01581 Mansfield, MA 220 Tol: 508-822-9	02048 Project	Name: P	EN-Be	XFOR	0	AD	Ex		MAIL				Same	e as Cli	ient info	PO #: MA220	101		
Client Informatio	n	Project	Project Location: Boxford, MA					Regulatory Requirements & Project In								formation Requirements				
Client: CHO	CI	Project	Project #: MA220701					Yes D No MA MCP Analytical Methods Yes D No CT RCP Analytical Methods Yes D No Matrix Spike Required on this SDG2 (Required for MCP Inorganics)												
Address: 8 P	Project	Project Manager: Brian Moure					Yes D No GW1 Standards (Info Required for M								etals & EPH with Targets)					
S. Nati	760 ALPH	ALPHA Quote #:					Yes D No NPDES RGP Other State /Fed Program							Criteria RCS-1						
Phone: 508 31	Turn-	Turn-Around Time																		
Email: <u>bmoore</u> Additional P 215 Project	≻ني سنع ين سن يكن من يكن م من يكن من يكن من يكن من يكن	tion:	ndard (Due:	⊐ RUSH (only 4	contirmed if pre-a	(sproved)	D 8260 D 624	D ABN D 524.2 S: DMCP 13 DAH	S: DRCRAS DMCP 14 DRCP	Wanges & Targets C. PP1	Aranges & Targets D Ranges On	Oquant Only Der	10 and				SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	TOTAL # BOTT		
ALPHA Lab ID (Lab Use Only)	Sar	nple ID	Collection Date Time			Sampler	2 KOC	METAL	EPH	Hill Ha		Ë/	//	/ /	/	14	Sample Comments	LE		
	5-1	17		Title		minute			1			1	ff	1	+	-	Sample Comments	, .		
37070-01	5-a		7/12/22	13:25	6011	SJH			X						\square	+		2		
-02	5-3)	4	13:20	1	1			X						\square	1		9		
-03	5-4			13:15					X									2		
-04	5-5			13:10					X			+			+	-		2		
-05	5-6			13:05					V		-	-			++	+		0		
-04	5-2			13:00	-				^	V					+	+		6		
- OQ		<i>.</i>							+	~	-		-		-			0		
			1						-		-				++					
						-			+		-	-		_	+	+		-		
Container Type P= Plastic A= Amber glass	Preservative A= None B= HCl				Conta	ainer Type			A	٧										
V= Vial G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH		Relinquished By:			Preservative Date/Time 7/12/22 4:68		A F												
C= Cube O= Other E= Encore D= BOD Bottle	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	Infled						Received By:					Date/T	ime 16:5		All samples submitted are subject to Alpha's Terms and Conditions.				
Page 42 of 42														FORM NO: 01-01 (mm 12-Mar 2012)						